

Type 8703 can be combined with...

Type 0330

3/2 or 2/2-way valve

Type 6013

2/2-way valve

Mass flow meter are used in process technology for the direct measurement of the mass flow of gases. In case of volumetric flow meters, it is necessary to measure the temperature and the pressure or the density, because gases change their density or rather their volume depending on the pressure. The measurement of the mass flow, on the other hand, is independent of the pressure and temperature.

The digital mass flow meter type 8703 uses a sensor on silicon chip

Mass Flow Meter (MFM) for Gases

- Direct flow measurement by MEMS- Technology for nominal flow rates from 10 ml_N/min to 80 l_N/min (N_2)
- High accuracy
- Short response time
- Compact design and digital communication

basis located directly in contact with the gas. Due to the fact that the sensor is directly in the bypass channel a very fast response time of the MFM is reached. The actual flow is given over RS485-communication. Type 8703 can optionally be calibrated for two different gases, the user is able to switch between these two gases. This instrument communicates with master devices digitally, no further A/D conversions needed.

Technical Data	
Nominal flow range ¹⁾	10 ml _N /min ²⁾ to 80 l _N /min (N ₂),
(Q _{nominal})	see table on p. 2
Turn-down ratio	1:50, higher turn-down ratio on request
Operating gas	Neutral, non-contaminated gases, on request
Calibration gas	Operating gas or air with conversion factor
Max. operating pressure (Inlet pressure)	10 bar (145 psi) depending on the orifice of the valve
Gas temperature	-10 to +70°C (-10 to +60°C with oxygen)
Ambient temperature	-10 to +50°C ³⁾
Accuracy	±0.8% o.R. ±0.3% F.S. (after 1 min. warm up time)
Repeatability	±0.1% F.S.
Response time (t _{95%})	< 300 ms
Materials Body Housing Seals	Aluminium or stainless steel Metal FKM, EPDM
Port connection	NPT 1/4, G 1/4, screw-in fitting or sub-base, others on request
Electr. connection	Plug D-Sub 9-pin

Power supply	24V DC
Voltage tolerance	±10%
Residual ripple	< 2%
Power consumption	Max. 11.5 W (depending on control valve used)
Communication	Digital via RS485 (half-duplex or full-duplex), RS422, RS232 via adapter
Protection class	IP40
Dimensions [mm]	see drawings p. 5-6
Total weight	ca. 500 g (aluminium body)
Installation	horizontal or vertical
Light emitting diodes (default functions, other functions programmable)	Indication for power, limit and error
Binary inputs (default functions, other functions programmable)	Two 1. Start Autotune 2. not assigned
Binary output (default functions, other functions programmable)	One relay output for: 1. Limit (setpoint not reached) Max. Load: 25V, 1A, 25VA

¹⁾ The nominal flow value is the max. flow value calibrated which can be controlled. The nominal flow range defines the range of nominal flow rates (full scale values) possible.

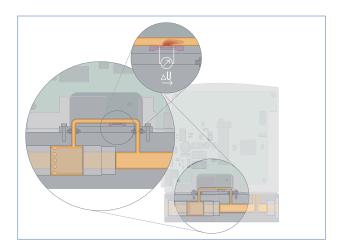
²⁾ Index N: Flow rates referred to 1.013 bar and 0° C.

Alternatively Index S which refers to 1.013 bar and 20° C.

³⁾ Higher temperature on request.

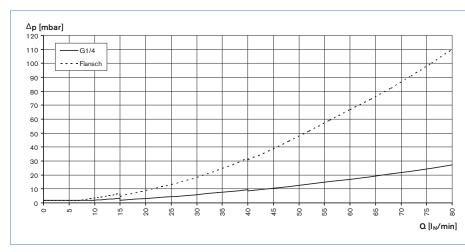
По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астана +7 (7172) 69-68-15 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Владимир +7 (4922) 49-51-33 Волгоград +7 (8442) 45-94-42 Воронеж +7 (4732) 12-26-70 Екатеринбург +7 (343) 302-14-75 Иваново +7 (4932) 70-02-95 Ижевск +7 (3412) 20-90-75 Иркутск +7 (3952) 56-24-09 Йошкар-Ола +7 (8362) 38-66-61 Казань +7 (843) 207-19-05


Калининград +7 (4012) 72-21-36 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб. Челны +7 (8552) 91-01-32 Ниж. Новгород +7 (831) 200-34-65 Нижневартовск +7 (3466) 48-22-23 Нижнекамск +7 (8555) 24-47-85

Новороссийск +7 (8617) 30-82-64 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Первоуральск +7 (3439) 26-01-18 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саранск +7 (8342) 22-95-16 Саратов +7 (845) 239-86-35 Смоленск +7 (4812) 51-55-32 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Сызрань +7 (8464) 33-50-64 Сыктывкар +7 (8212) 28-83-02 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Чебоксары +7 (8352) 28-50-89 Челябинск +7 (351) 277-89-65 Череповец +7 (8202) 49-07-18 Ярославль +7 (4852) 67-02-35

сайт: burkert.pro-solution.ru | эл. почта: btk@pro-solution.ru телефон: 8 800 511 88 70


Measurement principle

The actual flow rate is detected by a sensor. This operates according to a thermal principle which has the advantage of delivering the mass flow without any corrections for the required pressure or temperature.

A small part of the total gas stream is diverted into a small, specifically designed bypass channel, that ensures laminar flow conditions. The sensor element is a chip immersed into the wall of this channel. The chip, produced in MEMS technology, contains a heating resis-tor and two temperature sensors (thermopiles) which are arranged symmetrically upstream and downstream of the heater. The differential voltage of the thermopiles is a measure of the mass flow rate passing this bypass channel. The calibration procedure effectuates a unique assignment of the sensor signal to the total flow rate passing the device.

Pressure Loss Diagram (ref. to air, with 250µm inlet filter)

The diagram shows exemplarily the pressure loss characteristics when air fl owing through.

For determining the pressure loss with another gas it needs to calculate the air equivalent and respect the fl uidics needed with the other gas.

Notes regarding the selection of the unit

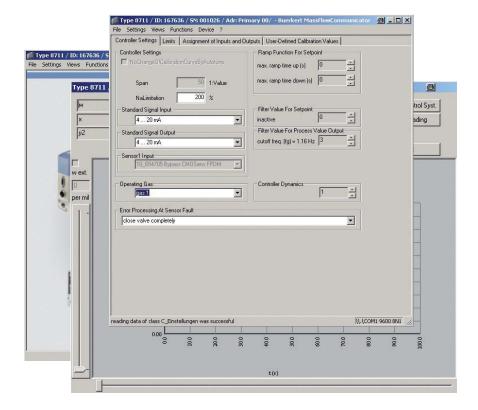
(Other gases on request)

Gas	Min. Q _{Nom} [I _N /min]	Max. Q _{Nom} [I _N /min]
Argon	0.01	80
Helium	0.01	500
Carbon dioxide	0.02	40
Air	0.01	80
Methane	0.01	80
Oxygen	0.01	80
Nitrogen	0.01	80
Hydrogen	0.01	500

Notes regarding the selection of the unit

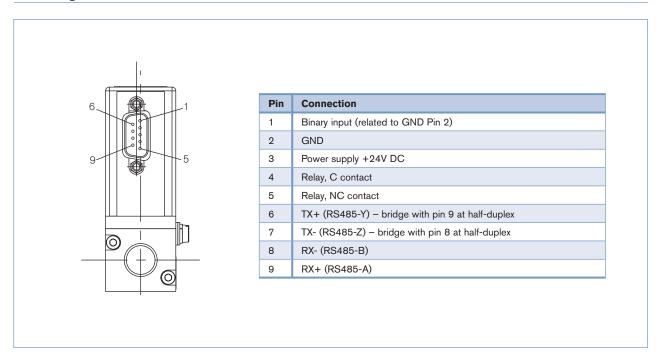
The decisive factors for the perfect functioning of an MFM within the application are the fl uid compatibility, the normal inlet pressure and the correct choice of the fl ow meter range. The pressure drop over the MFM depends on the fl ow rate and the operating pressure.

The request for quotation form on page 6 contains the relevant fl uid specifi cation.

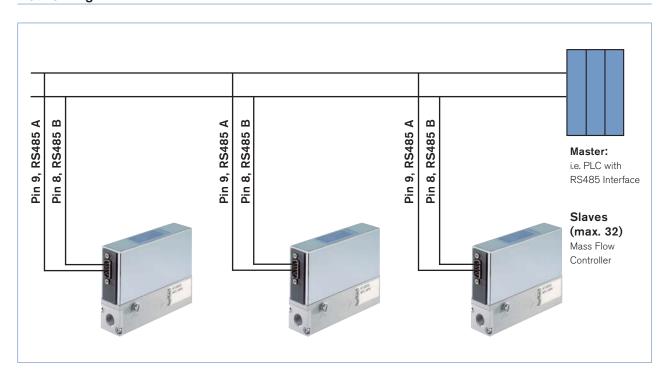

Ordering table for accessories

Article	Item no.
9-pin electrical connection	
D-Sub socket 9-pin solder connection with housing	917 623
Adapters 4)	
RS232 adapter for connection with an extension cable (item N0.917 039)	667 530
Computer extension cable for RS232 9-pin socket/plug 2m	917 039
USB adapter (version 1.1, USB-socket type B)	670 693
Communication software "MassFlowCommunicator"	

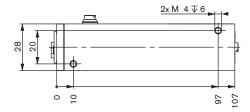
⁴⁾ Das Adapterzubehör dient der Inbetriebnahme und Diagnose und ist nicht zwingend für den Betrieb erforderlich

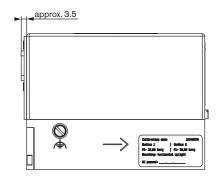

Software MassFlowCommunicator for Communication with Bürkert MFC/MFM

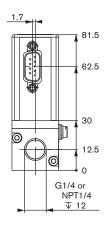
The communication software allows the user to program additionally various functions. For that purpose the MFC or MFM has to be connected to the computer by a RS232 adapter.

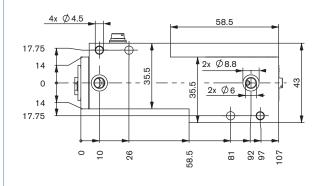


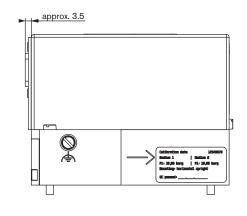
Pin Assignment

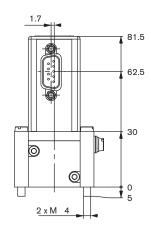



Networking




Threaded version





Sub-base version

MFC/MFM-applications - Request for quotation

You can fill out the fields directly in the PDF file before printing out the form.

Note

Please complete and send to your nearest Bürkert sales centre

Company		
<u> </u>	Contact person	out the f
Customer No	Department	
Address	Tel./Fax	
Postcode/Town	E-mail	
MFC-Application MFM-Applicat	ion Quantity Required deliv	ery date
Medium data		
Type of gas (or gas proportion in mixtures)		
Density	kg/m ^{3 5)}	
Gas temperature [°C or °F]	°F	
Moisture content	g/m³	
Abrasive components/solid particles	no yes, as follows:	
El tata da la		
Fluidic data		
Flow range \mathbf{Q}_{nom} Inlet pressure at \mathbf{Q}_{nom}^{7} Outlet pressure at \mathbf{Q}_{nom} Max. inlet pressure \mathbf{P}_{1max} MFC/MFM port connection	Min.	
Installation Ambient temperature	horizontal vertical, flow upwards vertical, flow downwards	
Material data		
Body	Aluminium Stainless steel	
Seal	FKM EPDM	

To find your nearest Bürkert facility, click on the orange box
--

Mass Flow Meter (MFM) for Gases

- Bypass MFC with capillary technology for nominal flow rates from 5 ml_N/min to 15 l_N/min
- Applicable for aggressive gases
- Compact design and digital communication

Type 8619

Multichannel program controller

Type 0330

3/2 or 2/2way solenoid valve

Type 6013

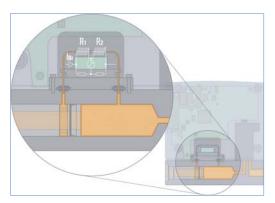
2/2-way solenoid valve

Mass flow meters are used in process technology for the direct measurement of the mass flow of gases. In case of volumetric flow meters, it is necessary to measure the temperature and the pressure either the density, because gases change their density or rather their volume depending on the pressure. The measurement of the mass flow, on the other hand, is independent of the pressure and the temperature.

The digital mass flow meter Type 8705 uses a classic bypass sensor (see the description on page 2). The actual flow can be read out digitally over RS-communication. Type 8705 can optionally be calibrated for two different gases, the user can switch between these two gases.

The materials of the parts that come into contact with the medium are selected according to customer specification so that the unit can be operated with the complete range of standard process gases.

Technical data			
Full scale range ¹⁾	5 to 15000 ml _N /min ²⁾	Electr. connection	D-Sub plug 9-pin
(Q _{nom})	N₂ equivalent [™]	Power supply	24V DC
Control range	1:50	Voltage tolerance	±10 %
Operating gases	Neutral, or aggressive gases	Residual ripple	<2 %
Calibration gas	Operating gas or air with conversion factor	Power consumption	Max. 2.5 W
Max. operating pressure (Inlet pressure)	10 bar (145 psi)	Communication	Digital via RS485 (half duplex or full duplex), RS422, RS232 with adapter
Medium temperature	-10 to +70°C (-10 to +60°C for oxygen)	Protection class	IP40
Ambient temperature	-10 to +50°C ³⁾ , others on request	Dimensions [mm]	See drawings on page 5
Accuracy	±1.5% o.R. ±0.3% F.S.	Total weight	ca. 850 g (stainless steel)
	(after 30min. heating period)	Mounting position	Horizontal or vertical
Repeatability	±0.1% F.S.	Light emitting diode display	Indication for Power, Limit
Response time (t _{95%})	<3 s	(default, other allocations possible)	Error
Materials Body Housing Seals	Stainless steel PC (Polycarbonate) or metal	Binary input (default, other functions possible)	Two 1. Not assigned 2. Not assigned
Port connections	FKM, EPDM or FFKM NPT 1/4, G 1/4, Screw-in fitting or sub-base, others on request	Binary output (default, other functions possible)	One relay-output for Limit (process value close to full scale value) Max. load: 25V, 1A, 25VA


 $^{^{\}scriptsize 1)}$ The nominal flow value is the max. flow value calibrated which can be controlled. The nominal flow range defines the range of nominal flow rates (full scale values) possible. $^{2)}$ Index N: Flow rates referred to 1.013 bar and 0° C.

Alternatively there is an Index S available which refers to 1.013 bar and 20° C

³⁾ Higher temperatures on request

Measuring principle

The measurement is based on the bypass principle. A laminar flow element in the main channel generates a small pressure drop. This drives a small flow, proportional to the main flow, through the bypass (sensor tube).

Two heating resistors, which are connected in a measuring bridge, are wounded on this stainless steel tube. In the zero-flow state, the bridge is balanced, but with flow, heat is transported in the flow direction and the bridge becomes unbalanced.

The dynamics of the measurement is limited by the tube walls, which act as a thermal barrier. Through use of suitable software response times are obtained (in the range of a few seconds) that are adequate for a wide range of applications.

With contaminated gases we recommend to install filter elements upstream. This avoids changes in the division ratio between main flow and sensor tube, as well as

changes in the heat transmission caused by deposits on the walls of the sensor tube.

With these sensors even aggressive gases can be measured, because all essential parts in contact with the gas are fabricated in stainless steel. With this sensor principle it is also possible to convert between different gases.

$Q(Gas) = f \times Q(N_2)$

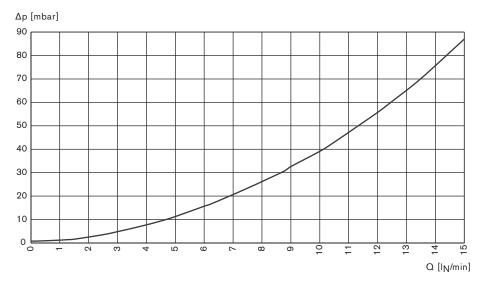
Ar

He

CO,

By using the gas factors it is possible that the accuracy is not within the datasheet specification.

gas	tactor t	Tot applications which flood high accuracy it is
N ₂	1.00	
Luft	1.00	The compatibility of the sealing materials of the
O_2	0.98	
H ₂	1.01	


For applications which need high accuracy it is recommended to calibrate under application conditions.

The compatibility of the sealing materials of the MFMs should be checked before use with another gas.

Pressure loss diagram (ref. to air)

1.4

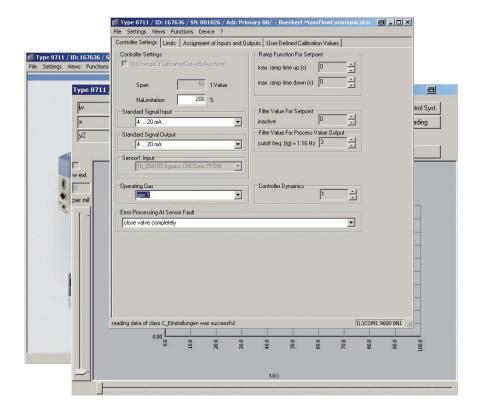
1.42 0.77

The diagram shows exemplarily the pressure loss characteristics when air flows through a flowmeter with 1/4" pipe connection. For determining the pressure loss with another gas it needs to calculate the air equivalent.

Notes regarding the selection of the unit

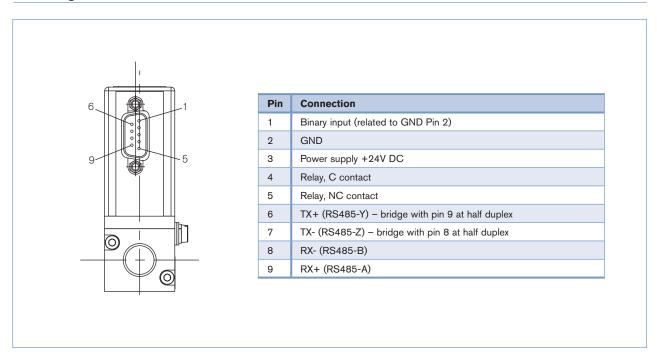
The decisive factors for the perfect functioning of a MFM within the application are the fluid compatibility, the normal inlet pressure and the correct choice of the flow meter range. The pressure drop over the MFM depends on the flow rate and the operating pressure.

The request for quotation form on page 6 contains the relevant fluid specification. Please use in this way the experience of Bürkert engineers already in the design phase and provide us with a copy of the request containing the data of your application together with your inquiry or order.

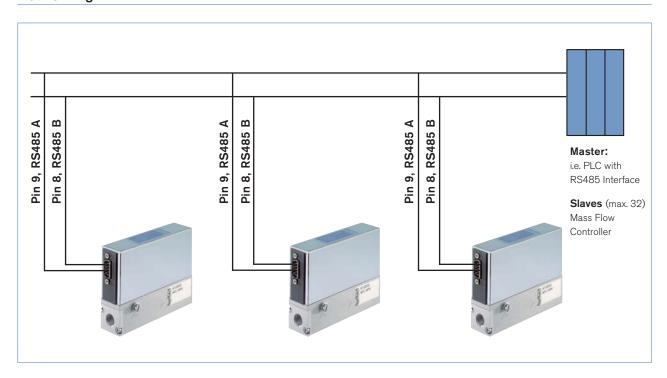

Ordering table for accessories

Article	Item no.
9-pin electrical connection	
D-Sub socket 9-pin solder connection with housing	917 623
Adapters 4)	
RS232 adapter for connection with an extension cable (item N0.917 039)	667 530
Computer extension cable for RS232 9-pin socket/plug 2m	917 039
USB adapter (version 1.1, USB-socket type B)	670 693
USB cable 2m, connector type A to connector type B	772 299
Communication software "MassFlowCommunicator"	

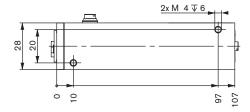
⁴⁾ The adapters serve mainly for initial operation or diagnosis. Those are not obligatory for continuous operation.

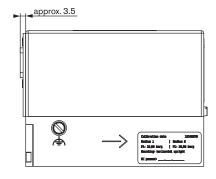

Software MassFlowCommunicator for Communication with Bürkert MFC/MFM

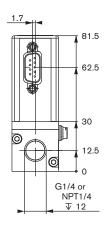
The communication software allows the user to program additionally various functions. For that purpose the MFC or MFM has to be connected to the computer by a RS232 adapter.

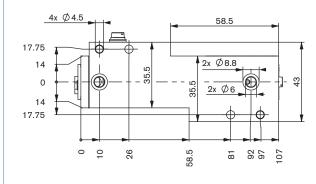


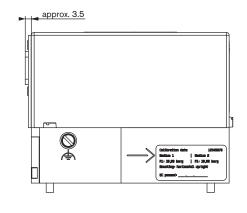
Pin Assignment

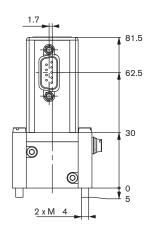



Networking




Threaded version





Sub-base version

Note

You can fill out the fields directly in the PDF file before printing out the form.

MFC/MFM-applications - Request for quotation

Please complete and send to your nearest Bürkert sales centre

_		-		out th
Company		Contact person		
Customer No		Department		
Address		Tel./Fax		
Postcode/Town		E-mail		
MFC-Application MFM-Applic	ation 0	uantity	Required delivery date	
Medium data				
Type of gas (or gas proportion in mixtures)				
Density	ļ	kg/m ^{3 5)}		
Gas temperature [°C or °F]		C	°F	
Moisture content		g/m³		
Abrasive components/solid particles	no	yes, as foll	ows:	
Fluidic data				
Flow range Q _{nom}		Min.	I _s /min (slpm) ⁶⁾ kg/h cm _s ³ /min (sccm) ⁶⁾ I _s /h ⁶⁾	
Inlet pressure at Q_{nom}^{7} $p_1 =$	ŀ	par(g)		
Outlet pressure at Q_{nom} $p_2 =$		oar(g) ■		
Max. inlet pressure P _{1max}		oar(g) ■		
	1/4" NPT-thre	(DIN ISO 228/1) ad (ANSI B1.2) g (acc. to specification for pi mm pipeline (external Ø) nch pipeline (external Ø)	ipeline)	
Installation Ambient temperature	horizontal vertical, flow upwar	ds vertical, flo	w downwards	
·		-		
Material data				
Body	Aluminium	Stainless steel		
Seal	FKM	EPDM		
■ Please quote all pressure values as overpress 5) at: 1,013 bar(a) and 0°C 6) at: 1.013 bar (a)		ospheric pressure bar(ü) nes with calibration pressure		

To find your nearest Bürkert facility, click on the orange box $\quad \rightarrow \quad$

In case of special application conditions, please consult for advice.

Subject to alteration.
© Christian Bürkert GmbH & Co. KG

1307/0_EU-en_00895248

Mass Flow Controller (MFC) for Gases

MEMS- Technology for nominal flow rates

Compact design and digitally communication

Direct flow measurement by

from 10 ml_N/min to 80 l_N/min (N_2)

High accuracy and repeatability

Short settling time

Type 8713 can be combined with...

3/2 or 2/2-way valve

Tvp 6013

- 1yp 0013
- 2/2-way valve

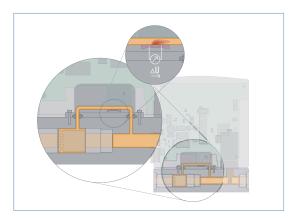
Type 8713 controls the mass flow of gases that is relevant for most applications in process technologies. The measured value will be compared in the digital control electronics with the predefined set point according to the signal; if a control difference is present, the control value output to the proportional valve will be modified using a PI-control algorithm. Due to the fact that the sensor is directly in contact with the gas a very fast response time of the MFC is reached. In this way, the mass flow can be maintained at a fixed value or a predefined profile can be followed, regardless of

pressure variations or other changes in the system. Type 8713 can optionally be calibrated for two different gases, the user is able to switch between these two gases. As control element a direct-acting proportional valve guarantees a high sensitivity and a good control characteristics of the MFC. This instrument communicates digitally with master devices, no further A/D conversions needed.

Technical Data			
Nominal flow range ¹⁾	10 ml _N /min ²⁾ to 80 l _N /min (N ₂),		
(Q _{nominal})	see table on p. 2		
Turn-down ratio	1:50, higher turn-down ratio on request		
Operating gas	Neutral, non-contaminated gases, on request		
Calibration gas	Operating gas or air with conversion factor		
Max. operating pressure (Inlet pressure)	10 bar (145 psi) depending on the orifice of the valve		
Gas temperature	-10 to +70°C (-10 to +60°C with oxygen)		
Ambient temperature	-10 to +50°C ³⁾		
Accuracy	±0.8% o.R. ±0.3% F.S. (after 1 min. warm up time)		
Repeatability	±0.1% F.S.		
Settling time (t _{95%})	< 300 ms		
Materials Body Housing Seals	Aluminium or stainless steel Metal FKM, EPDM		
Port connection	NPT 1/4, G 1/4, screw-in fitting or sub-base, others on request		
Control valve Valve orifice k _{VS} value	Normally closed 0.05 to 4.0 mm 0.00006 to 0.32 m³/h		

1) The nominal flow value is the max. flow value calibrated which can be controlled.	The
nominal flow range defines the range of nominal flow rates (full scale values) pos	sible.

²⁾ Index N: Flow rates referred to 1.013 bar and 0° C.


Electr. connection	Plug D-Sub 9-pin	
Power supply	24V DC	
Voltage tolerance	±10%	
Residual ripple	< 2%	
Power consumption	Max. 11.5 W (depending on control valve used)	
Communication	Digital via RS485 (half-duplex or full-duplex), RS422, RS232 via adapter	
Protection class	IP40	
Dimensions [mm]	see drawings p. 5-6	
Total weight	ca. 500 g (aluminium body)	
Installation	horizontal or vertical	
Light emitting diodes (default functions, other functions programmable)	Indication for power, limit and error	
Binary inputs (default functions, other functions programmable)	Two 1. Start Autotune 2. not assigned	
Binary output (default functions, other functions programmable)	One relay output for: 1. Limit (setpoint not reached) Max. Load: 25V, 1A, 25VA	

Alternatively Index S which refers to 1.013 bar and 20° C

³⁾ Higher temperature on request.

Measurement principle

The actual flow rate is detected by a sensor. This operates according to a thermal principle which has the advantage of delivering the mass flow without any corrections for the required pressure or temperature.

A small part of the total gas stream is diverted into a small, specifically designed bypass channel, that ensures laminar flow conditions. The sensor element is a chip immersed into the wall of this channel. The chip contains a heating resistor and two temperature sensors (thermopiles) which are arranged symmetrically upstream and downstream of the heater. The differential voltage of the thermopiles is a measure of the mass flow rate passing this bypass channel. The calibration procedure effectuates a unique assignment of the sensor signal to the total flow rate passing the device.

Nominal Flow Range of Typical Gases

(other gases on request)

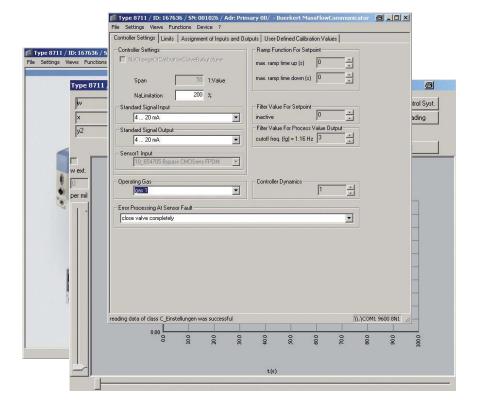
Gas	Min. Q _{Nom} [I _N /min]	Max. Q _{Nom} [I _N /min]	
Argon	0.01	80	
Helium	0.01	500	
Carbon dioxide	0.02	40	
Air	0.01	80	
Methane	0.01	80	
Oxygen	0.01	80	
Nitrogen	0.01	80	
Hydrogen	0.01	500	

Notes regarding the selection of the unit

For the proper choice of the actuator orifice within the MFC, not only the required maximum flow rate Q_{nom} , but also the pressure values directly before and after the MFC (p_1, p_2) at this flow rate Q_{nom} should be known. In general, these pressures are not the same as the overall inlet and outlet pressures of the whole plant, because usually there are additional flow resistors (tubing, additional shut-off valves, nozzles etc.) present both before and after the controller.

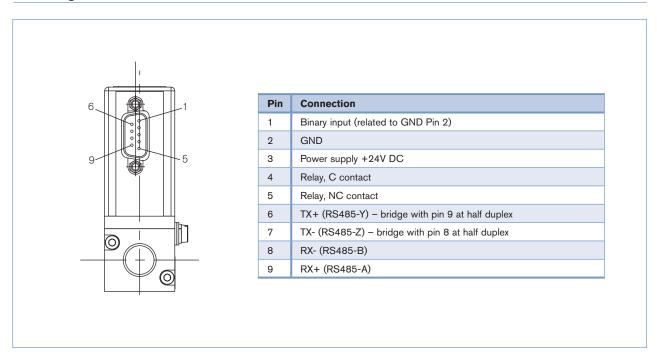
Please use the request for quotation form on p. 7 to indicate the pressures $\it directly$ before and after the MFC. If these should be unknown or not accessible to a measurement, estimates are to be made by taking into account the approximate pressure drops over the flow resistors before and after the MFC, respectively, at a flow rate of $\rm Q_{nom}$. In addition, please quote the maximum inlet pressure $\rm p_{1_{max}}$ to be encountered. This data is needed to make sure the actuator is able to provide a close-tight function within all the specified modes of operation.

The request form on page 7 contains the relevant fluid specification. Using the experience of Bürkert engineers already in the design phase provide us with a copy of the request containing the necessary data together with your inquiry or order.

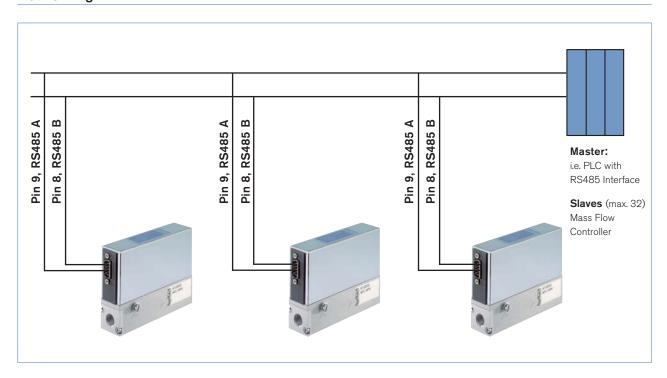

Ordering table for accessories

Article	Item no.
9-pin electrical connection	
D-Sub socket 9-pin solder connection with housing	917 623
Adapters ⁴⁾	
RS232 adapter for connection with an extension cable (item N0.917 039)	667 530
Computer extension cable for RS232 9-pin socket/plug 2m	917 039
USB adapter (version 1.1, USB-socket type B)	670 693
Communication software "MassFlowCommunicator"	

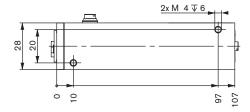
⁴⁾ The adapters serve mainly for initial operation or diagnosis. Those are not obligatory for continuous operation.

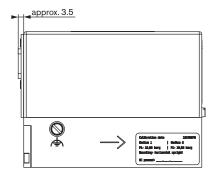

Software MassFlowCommunicator for Communication with Bürkert MFC/MFM

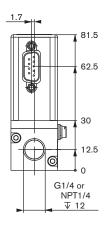
The communication software allows the user to program additionally various functions. For that purpose the MFC or MFM has to be connected to the computer by a RS232 adapter.

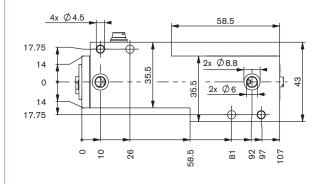


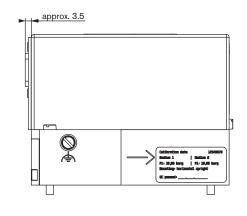
Pin Assignment

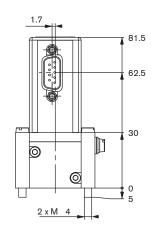



Networking

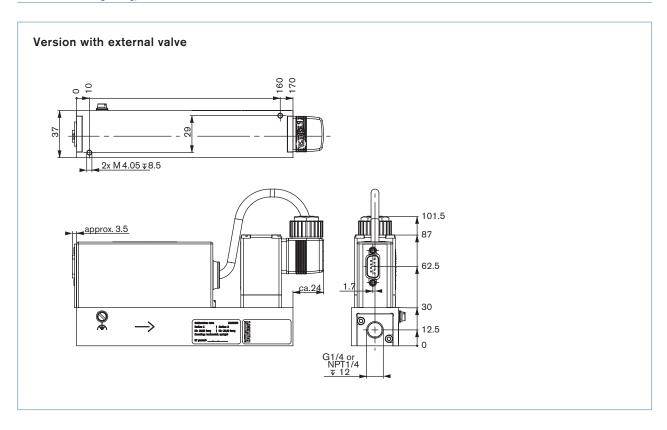



Threaded version





Sub-base version



Dimensions [mm], continued

Note

You can fill out the fields directly in the PDF file before printing out the form.

MFC/MFM-applications - Request for quotation

Please complete and send to your nearest Bürkert sales centre

C		Control	out th
Company		Contact person	
Customer No		Department	
Address		Tel./Fax	
Postcode/Town		E-mail	
MFC-Application MFM-Applic	ation 0	uantity Required delivery date	
Medium data			
Type of gas (or gas proportion in mixtures)			
Density		xg/m³ ⁵⁾	
Gas temperature [°C or °F]		°F	
Moisture content		g/m³	
Abrasive components/solid particles	no	yes, as follows:	
Fluidic data			
Flow range Q _{nom}		Min.	
Inlet pressure at Q _{nom} ⁷⁾ p ₁ =		par(g) ■	
Outlet pressure at Q _{nom} p ₂ =		par(g) ■	
Max. inlet pressure P _{1max}		par(g) ■	
MFC/MFM port connection	1/4" NPT-thre	ting (DIN ISO 228/1) ad (ANSI B1.2) g (acc. to specification for pipeline) mm pipeline (external Ø) nch pipeline (external Ø)	
Installation	horizontal vertical, flow upwar		
Ambient temperature		C	
Material data			
Body	Aluminium	Stainless steel	
Seal	FKM	EPDM	
■ Please quote all pressure values as overpress 5) at: 1,013 bar(a) and 0°C 6) at: 1.013 bar (a)		ospheric pressure bar(ü) es with calibration pressure	

To find your nearest	Bürkert facility.	click on the orange b	OX
TO TITLE YOUR HEATEST	. Durkert racinty,	click off the draffge b	UA.

In case of special application conditions, please consult for advice.

Subject to alteration.
© Christian Bürkert GmbH & Co. KG

1212/2_EU-en_00891970

Mass Flow Controller (MFC) for Gases

- Inline MFC for full scale rates from 20 l_N/min to 1500 l_N/min; 1/4" to 1"
- High accuracy
- Short settling time
- Optional fieldbus

Type 8626 can be combined with...

Type 8619

Multichannel program controller

Type 0330 3/2-way valve

Type 6013

2/2-way valve

The Type 8626 mass flow controller forms an integrated system, consisting of the flow sensor, control electronics and control valve. Using this controller, mass flows of gases can be kept constant or can follow a predefined set-point profile regardless of interfering influences (such as pressure or temperature variations). The sensor works according to the thermal principle (constant-temperature anemometer). The measurement is made in the main channel and provides the mass flow directly without any corrections (see description on page 2). The digital flow controller compares the set point with the actual value and calculates the control signal for the proportional valve. The direct-acting solenoid control valve works according to the well-tried plunger-type principle, and is driven by a PWM voltage signal. Besides its control function an

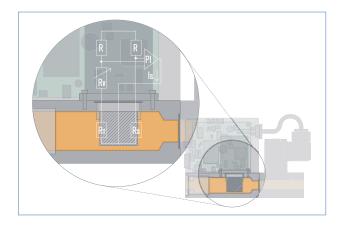
intelligent algorithm ensures that the valve closes tight with 0% set point. The measurement in the main flow of the MFC Type 8626 is characterized by an excellent dynamics and a low sensitivity to contamination. The MFC can be used in versatile flow control tasks.

- Process technology
- Heat treatment
- Environmental technology
- Material coating
- Burner controls
- Fuel cell technology

Technical Data				
Nominal flow range 1)	20 to 1500 l _N /min ²⁾ , N ₂ equivalent			
(Q _{nom})	see table on page 2, higher flows on request			
Turn-down ratio	1:50 ³⁾			
Operating gas	Neutral, non-contaminated			
	gases, others available on request			
Calibration gas	Operating gas or air with correcting function			
Max. operating pressure	Up to max. 10 bar,			
(inlet pressure)	depending on the orifice of the valve			
Gas temperature	-10 to +70°C (-10 to +60°C with oxygen)			
Ambient temperature	-10 to +45°C (higher temperatures on re-			
	quest)			
Accuracy	±1.5% o.R. ±0.3% F.S.			
(after 15 min warm up time)	(o.R.: of reading; F.S.: of full scale)			
Repeatability	±0.1% F.S.			
Settling time (t _{95%})	<500 ms			
Materials				
Body Aluminium (black anodized) or stainless				
Housing	Aluminium (coated)			
Seals	FKM, EPDM			

¹⁾ The nominal flow value is the max. flow value calibrated which can be controlled. The nominal flow range defines the range of nominal flow rates (full scale values) possible.
²⁾ Index N: Flow rates referred to 1.013 bar and 0° C.

Port connection	G 1/4", 3/8", 1/2", 3/4", 1"		
	NPT 1/4", 3/8", 1/2", 3/4", 1"		
Control valve	Normally closed		
Valve orifice	0.8 to 12 mm		
k_{v_e} value	0.02 to 2.8 m ³ /h		
Electr. connection	Socket M16, round, 8-pin and		
	socket D-Sub HD15, 15-pin		
Additionally with:			
-PROFIBUS-DP:	Socket M12 5-pin or D-Sub 9-pin		
-DeviceNet/CANopen:	Plug M12 5-pin or D-Sub 9-pin		
with RS485 version only:	Plug D-Sub 9-pin		
Operating voltage	24V DC		
Voltage tolerance	±10%		
Residual ripple	< 2%		
Power consumption	12,5 W-37 W (depending on version)		
Type of protection	IP65		
(with connected cables)			
Dimensions	See drawings on p. 6-9		
Total weight	2,5 kg (Al, 16 W-valve)		
(examples)	4,5 kg (VA, 16 W-valve)		
Mounting position	Horizontal or vertical		
Light emitting diodes	Indication for		
(Default, other functions programmable)			
	2. Communication 4. Error		


Alternatively there is an Index S available which refers to 1.013 bar and 20° C

³⁾ With vertical installation and flow downwards the turn-down ratio is 1:10

Technical Data (cont.)					
Device variant	Analog signal version	Fieldbus version	RS485 version (only D-Sub, 9-pin)		
Analog communication		None	None		
Input signal (set point)	0-5 V, 0-10 V, 0-20 mA or 4-20 mA				
Input impedance	>20 kΩ (voltage)				
0	<300 Ω (current)				
Output signal (actual flow)	0-5 V, 0-10 V, 0-20 mA or 4-20 mA				
Max. current voltage output	10 mA				
Max. load current output	600 Ω				
Fieldbus option	None	PROFIBUS-DP, DeviceNet, CANopen	Modbus RTU (via RS interface)		
D-Sub HD15 covered with sealed plate for,					
pins for analogue inputs/outputs not					
connected)					
Digital communication	RS232 (supports Modbus RTU)		RS485, RS422		
via adapter possible:	RS485, RS422 or USB		USB		
Binary inputs	Three:		One: Start Autotune		
Default, other functions programmable)	1. Start Autotune				
	2. not assigned				
	3. not assigned				
Binary outputs	Two relay outputs		One relay output		
(Default, other functions programmable)	Limit (desired value cannot be achieved)		Limit (desired value cannot be achieved)		
	2. Error (e.g. sensor fault)		Load capacity: max. 25 V, 1 A, 25 VA		
	Load capacity: max. 60 V, 1 A, 60 VA				

Measuring Principle

This sensor works as a hot-film anemometer in the so-called CTA operational mode (Constant Temperature Anemometer). To do this, two resistors with precisely specified temperature coefficients located directly in the media flow and three resistors located outside the flow are connected together to form a bridge.

The first resistor in the gas flow (R_{γ}) measures the fluid temperature, while the second, low-value resistor (R_{s}) is heated so that it is maintained at a fixed, predefined over-temperature with respect to the fluid tem-

Nominal Flow Ranges of Typical Gases

(other gases on request)

Gas	Min. Q _{nom} [I _N /min]	Max. Q _{nom} [I _N /min]	
Acetylene	20	975	
Ammonia	20	1250	
Argon	20	1500	
Carbon dioxide	20	800	
Air	20	1500	
Methane	20	750	
Propane	20	400	
Oxygen	20	1500	
Nitrogen	20	1500	

perature. The heating current required to maintain this is a measure of the heat being removed by the flowing gas, and represents the primary measurement.

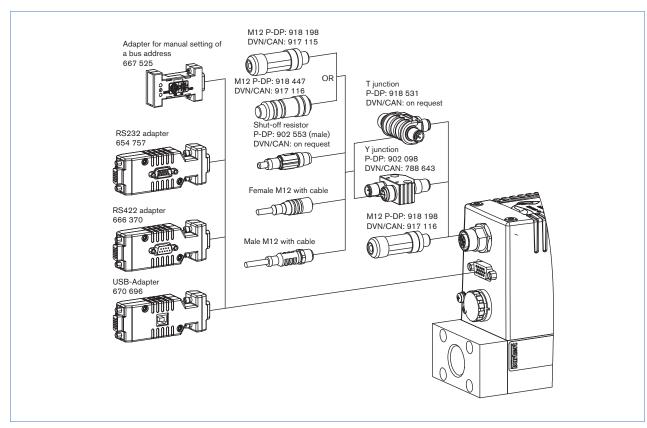
An adequate flow conditioning within the MFC and the calibration with high-quality flow standards ensure that the mass of gas flowing per time unit can be derived from the primary signal with high accuracy.

Notes Regarding the Configuration

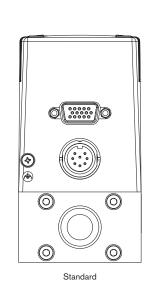
For the proper choice of the actuator orifice within the MFC, not only the required maximum flow rate Q_{nom} , but also the pressure values directly before and after the MFC $(p_1,\,p_2)$ at this flow rate Q_{nom} should be known. In general, these pressures are not the same as the overall inlet and outlet pressures of the whole plant, because there are usually additional flow resistors (tubing, additional shut-off valves, nozzles etc.) present both before and after the controller.

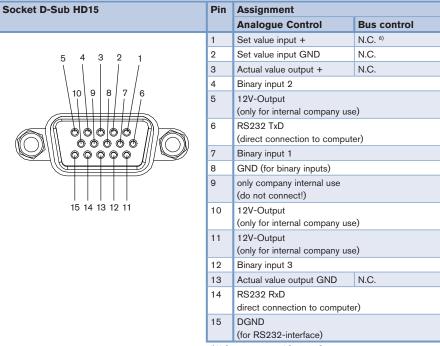
Please use the specification sheet (p. 10) to indicate the pressures directly before and after the MFC. If these should be unknown or not accessible to a measurement, estimates are to be made by taking into account the approximate pressure drops over the flow resistors before and after the MFC, respectively, at a flow rate of Q_{nom} .

In addition, please quote the maximum inlet pressure p_{1max} to be encountered. This data is needed to make sure the actuator is able to provide a close-tight function within all the specified modes of operation.

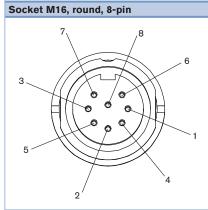

Please use the form on page 10 for the information about your specific requirements.

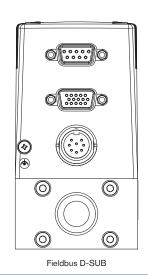
Ordering Chart for Accessories


Article	Iten	n No.
Connectors/Cables		
Round plug M16 8-pin (solder connection)		918 299
Round plug M16 8-pin with 5m cable		787 733
Round plug M16 8-pin with 10m cable		787 734
Plug D-Sub HD15 15-pin with 5m cable		787 735
Plug D-Sub HD15 15-pin with 10m cable		787 736
Adapters 4)		
RS232 adapter for connection to a computer, connection with an extension cable (item no. 917039)		654 757
Extension cable for RS232 9-pin socket/plug 2 m		917 039
RS422-Adapter (RS485 compatible)		666 370
USB-Adapter for D-Sub HD15		670 696
USB-Adapter for D-Sub 9-pin (RS485 Version)	670 693	
USB connection cable 2 m	772 299	
Adapter for manual bus adresse settings (instad of SW)		667 525
Software MassFlowCommunicator	Download from www.buerkert.com	
Accessories for Fieldbus	DeviceNet/ CANopen (A-coded)	
M12-Plug ⁵⁾	918 198	917 115
M12-socket (coupling) 5)	918 447	917 116
Y-junction ⁵⁾	902 098	788 643
T-junction	918 531	(on request)
Shut-off resistor	902 553	(on request)
		www.buerkert.com pe 8626)


⁴⁾ The adapters serve mainly for initial operation or diagnosis. Those are not obligatory for continuous operation.
5) The two M12 connectors as listed above cannot be used together on the same side of the Y-junction. At least one of the two M12 connection needs to be a prefabricated cable which uses typiclly a thinner connector.

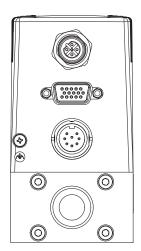
Pin Assignment



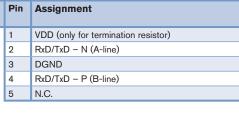

6) N.C.: not connected (not used) Note:

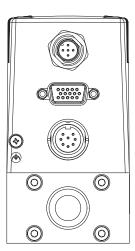
- Optional Pin 1 and 2 with bus version as transmitter input possible

- The cable length for RS232/ Setpoint and flow value signal is limited to 30 meters.

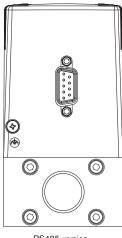

Pin	Assignment	
1	24V-Supply +	
2	Relay 1 - reference contact	
3	Relay 2 - reference contact	
4	Relay 1 - normally closed	
5	Relay 1 - normally opened	
6	24V-Supply GND	
7	Relay 2 - normally opened	
8	Relay 2 - normally closed	

Socket D-Sub 9-pin (only with fieldbus version)		Assignment	
		PROFIBUS DP	DeviceNet/ CANopen
	1	Shield	Shield
5 4 3 2 1	2	N.C.	CAN-L data line
	3	RxD/TxD - P (B-line)	GND
	4	RTS (control signal for repeater)	N.C.
	5	GND	N.C.
	6	VDD (only for termination resistor)	N.C.
	7	N.C.	CAN-H data line
9 8 7 6	8	RxD/TxD - N (A-line)	N.C.
	9	N.C.	N.C.




Pin Assignment (continued)

M12 Profibus

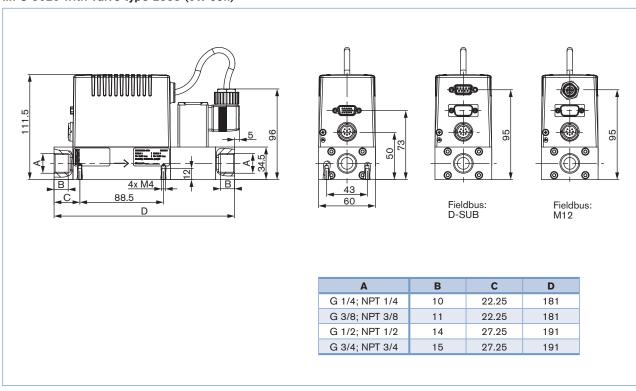


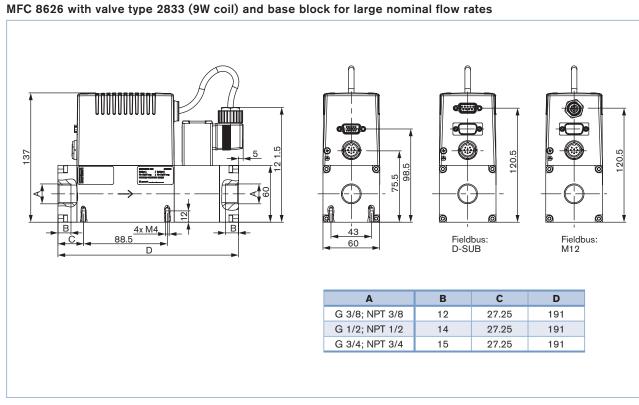
M12 DeviceNet

DeviceNet/ CANopen -

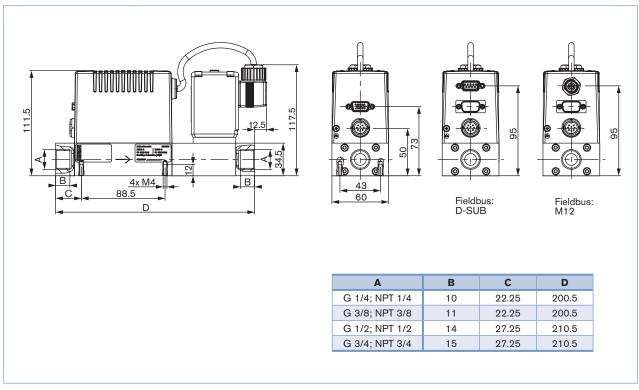
ı	Pin	Assignment
Ī	1	Shield
	2	N.C. 7)
	3	DGND
	4	CAN_H
	5	CAN_L

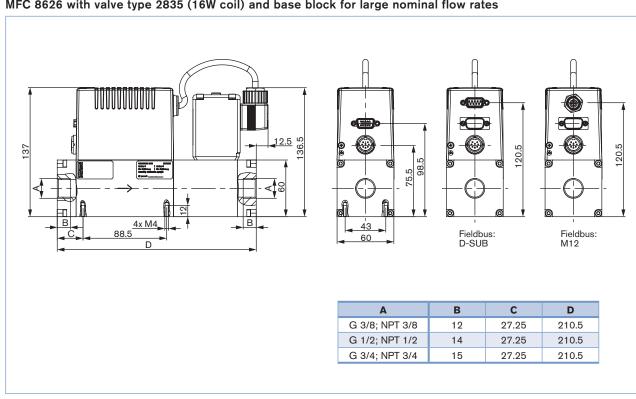
 $^{7)}$ Optional configuration with 24V DC possible for power supply via fieldbus connector. With this no power supply connection on round M16 plug needed.




Plug D-Sub 9-pin
9 8 7 6

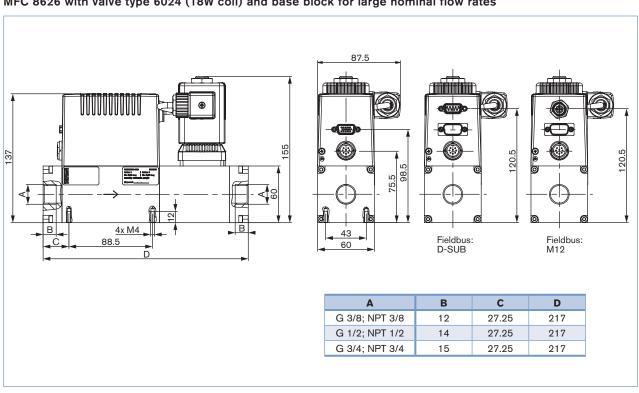
1 Binary input (related to GND Pin 2) 2 GND 3 Power supply +24V DC 4 Relay, normally opened 5 Relay, normally closed 6 TX+ (RS485-Y) – bridge with pin 9 at half duplex 7 TX- (RS485-Z) – bridge with pin 8 at half duplex 8 RX- (RS485-B)	Pin	Assignment
3 Power supply +24V DC 4 Relay, normally opened 5 Relay, normally closed 6 TX+ (RS485-Y) – bridge with pin 9 at half duplex 7 TX- (RS485-Z) – bridge with pin 8 at half duplex 8 RX- (RS485-B)	1	Binary input (related to GND Pin 2)
4 Relay, normally opened 5 Relay, normally closed 6 TX+ (RS485-Y) – bridge with pin 9 at half duplex 7 TX- (RS485-Z) – bridge with pin 8 at half duplex 8 RX- (RS485-B)	2	GND
5 Relay, normally closed 6 TX+ (RS485-Y) – bridge with pin 9 at half duplex 7 TX- (RS485-Z) – bridge with pin 8 at half duplex 8 RX- (RS485-B)	3	Power supply +24V DC
6 TX+ (RS485-Y) – bridge with pin 9 at half duplex 7 TX- (RS485-Z) – bridge with pin 8 at half duplex 8 RX- (RS485-B)	4	Relay, normally opened
duplex 7	5	Relay, normally closed
duplex 8 RX- (RS485-B)	6	
	7	, , ,
· ·	8	RX- (RS485-B)
9 RX+ (RS485-A)	9	RX+ (RS485-A)


MFC 8626 with valve type 2833 (9W coil)

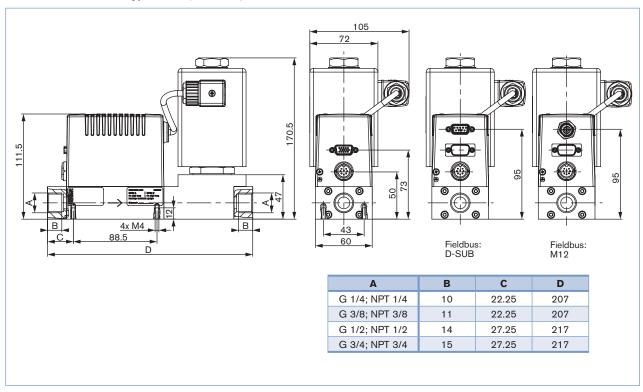


MFC 8626 with valve type 2835 (16W coil)

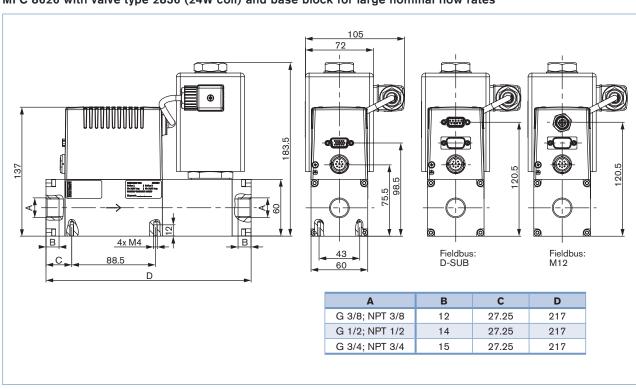
MFC 8626 with valve type 2835 (16W coil) and base block for large nominal flow rates



MFC 8626 with valve type 6024 (18W coil)



MFC 8626 with valve type 6024 (18W coil) and base block for large nominal flow rates



MFC 8626 with valve type 2836 (24W coil)

MFC 8626 with valve type 2836 (24W coil) and base block for large nominal flow rates

Note

the fields direct in the PDF file

MFC/MFM Applications - Request for Quotation

Please complete and send to your nearest Bürkert sales centre Company Contact person Customer No Department Address Tel./Fax Postcode/Town E-mail MFC-Application MFM-Application Quantity Required delivery date Fluid data Type of gas (or gas proportion in mixtures) Density kg/m^{3 8)} °С Gas temperature Moisture content g/m³ Abrasive components/solid particles yes, as follows: Fluidic data I_s/min (slpm) ⁹⁾ Flow range Q Min. I_N/min ⁸⁾ kg/h m_N³/h ⁸⁾ Мах. cm_N³/min ⁸⁾ cm_s³/min (sccm) ⁹⁾ I,/h ⁸⁾ I₂/h ⁹⁾ Inlet pressure at Q_{nom} 10) bar(g) ■ Outlet pressure at Q_{nom} p₂= bar(g) ■ Max. inlet pressure p, max bar(g) ■ MFC/MFM port connection without screw-in fitting 1/4" G-thread (DIN ISO 228/1) 1/4" NPT-thread (ANSI B1.2) 3/8" G-thread (DIN ISO 228/1) 3/8" NPT-thread (ANSI B1.2) 1/2" G-thread (DIN ISO 228/1) 1/2" NPT-thread (ANSI B1.2) 3/4" NPT-thread (ANSI B1.2) 3/4" G-thread (DIN ISO 228/1) with screw-in fitting mm Pipeline (external Ø) inch Pipeline (external Ø) horizontal, valve upright (standard) horizontal, valve on side Installation vertical, flow upwards vertical, flow downwards Ambient temperature Material data Body (base block) Aluminium (anodised) Stainless steel FKM Seal material **EPDM Electrical data** Signals for set point Standard signal with fieldbus with RS485 and actual value Setpoint / Actual value □ 0-5 V □ 0-20 mA ☐ D-Sub PROFIBUS DP ☐ D-Sub □ 0-10 V □ 4-20 mA ☐ M12 □ DeviceNet ☐ CANopen ■ Please quote all pressure values as overpressures with respect to atmospheric pressure [bar(ü)] 8) at: 1,013 bar(a) and 0°C 9) at: 1.013 bar (a) and 20°C 10) matches with calibration pressure

o find your nearest Bürkert facility, click on the o	orange box $ ightarrow$
In case of special application conditions,	Subject to alteration.
please consult for advice.	© Christian Bürkert GmbH & Co. KG

p. 10/10

Mass Flow Controller (MFC) for Gases

- Bypass MFC with capillary technology for nominal flow rates from 5 ml,/min to 15 l,/min
- Applicable for aggressive gases
- Fieldbus option

Type 8619

Multichannel program controllerr

Technical data

Type 0330

3/2 or 2/2way solenoid valve

Type 6013

2/2-way solenoid valve

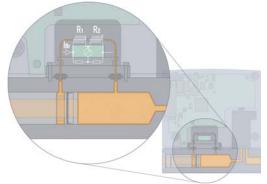
Type 8710 controls the mass flow of gases through a sensor element which is not in direct contact with the gas itself. The measured value provided by the sensor (see the description on page 2) will be compared in the digital control electronics with the predefined set point according to the signal; if a control difference is present, the control value output to the proportional valve will be modified using a PI control algorithm. In this way, the mass flow can be maintained at a fixed value or a predefined profile can be followed, regardless of pressure variations or other changes in the system.

The control element, a proportional valve working at low friction, guarantees a high sensitivity and a excellent control characteristics of the unit. The MassFlowCommunicator software can be used for parameterisation and diagnosis.

Typical application areas are gas dosing or rather the production of gas mixtures in:

- Heat treating,
- Melting treatment,
- · Environmental technology,
- Material coating

recililical data		
Full scale ranges ¹⁾	5 to 15000 ml _N /min ²⁾	
(Q _{nom})	N ₂ equivalent	
Control range	1:50	
Operating gases	Neutral, or aggressive gases	
Calibration gas	Operating gas or air with conversion factor	
Max. operating pressure	10 bar (145 psi),	
(Inlet pressure)	depending on the orifice of the valve	
Medium temperature	-10 to +70°C	
	(-10 to +60°C for oxygen)	
Ambient temperature	-10 to +50°C, others on request	
Accuracy	±1.5% o.R. ±0.3% F.S.	
	(after 30min. warm-up time)	
Repeatability	±0.1% F.S.	
Settling time (t _{95%})	<3 s	
Materials		
Body	Stainless steel	
Housing Seals	PC (Polycarbonate) or metal	
	FKM, EPDM, FFKM	
Port connections	NPT 1/4, G 1/4, Screw-in fitting or	
	sub-base, others on request	
Control valve (proportional valve)	,	
Valve orifice	0.05 to 2.0 mm	
k _{vs} -value	0.00006 to 0.09 m³/h	
Electr. connection	D-Sub plug 15-pin with PROFIBUS-DP: Socket M12 5-pin with DeviceNet, CANopen: Socket M12 5-pin	
Power supply	24V DC	


Voltage tolerance	±10 %
Residual ripple	<2 %
Power consumption	Max. 3.5-10 W (depends on proportional vale)
Input signal Input impedance	0-5 V, 0-10 V, 0-20 mA or 4-20 mA > 20 k Ω (voltage), < 300 Ω (current)
Output signal Max. current (voltage output) Max. load (current output)	0-5 V, 0-10 V, 0-20 mA or 4-20 mA 10 mA 600 Ω
Digital communication via adapter possible:	RS232, Modbus RTU (via RS adapter) RS485, RS422 or USB (see accessories table on p. 3)
Fieldbus option	PROFIBUS-DP, DeviceNet, CANopen
Protection class	IP40
Dimensions [mm]	See drawings on pages 5 and 6
Total weight	ca. 850 g (stainless steel)
Mounting position	Horizontal or vertical
Light emitting diode display (default, other allocations possible)	Indication for Power, Limit (with analog signals) / Communication (with fieldbus), Error
Binary input (default, other functions possible)	Two 1. Start autotune 2. Not assigned
Binary output (default, other functions possible)	One relay-output for 1. setpoint not reached, Max. load: 25V, 1A, 25VA

¹⁾ The nominal flow value is the max. flow value calibrated which can be controlled. The nominal flow range defines the range of nominal flow rates (full scale values) possible.

²⁾ Index N: Flow rates referred to 1.013 bar and 0° C.

Measuring principle

The measurement is based on the bypass principle. A laminar flow element in the main channel generates a small pressure drop. This drives a small flow, proportional to the main flow, through the bypass (sensor tube).

Two heating resistors, which are connected in a measuring bridge, are wounded on this stainless steel tube. In the zero-flow state, the bridge is balanced, but with flow, heat is transported in the flow direction and the bridge becomes unbalanced.

The dynamics of the measurement is limited by the tube walls, which act as a thermal barrier. Through use of suitable software in the controller, response times are obtained (in the range of a few seconds) that are adequate for a wide range of applications.

With contaminated gases we recommend to install filter elements upstream. This avoids changes in the division ratio between main flow and sensor tube, as well as changes in the heat transmission caused by deposits on the walls of the sensor tube.

With these sensors even aggressive gases can be controlled, because all essential parts in contact with the gas are fabricated in stainless steel. With this sensor principle it is also possible to convert between different gases.

 $Q(Gas) = f \times Q(N_2)$

gas	factor f
N ₂	1.00
Luft	1.00
O ₂	0.98
H_2	1.01
Ar	1.4
He	1.42
CO,	0.77

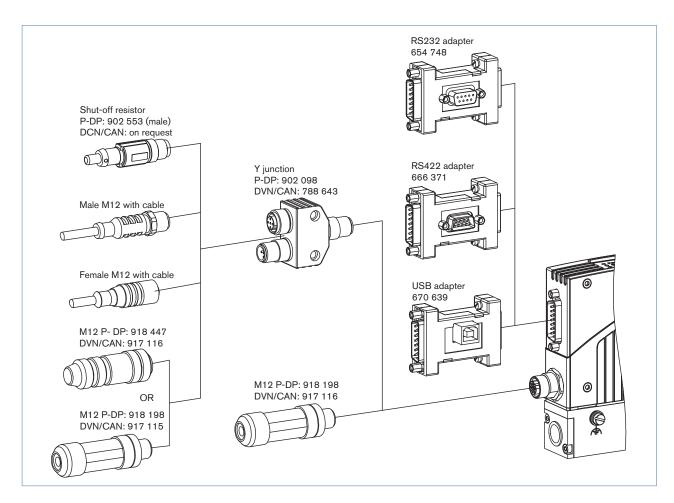
By using the gas factors it is possible that the accuracy is not within the datasheet specification. For applications which need high accuracy it is recommended to calibrate under application conditions.

The compatibility of the sealing materials of the MFCs should be checked before use with another gas.

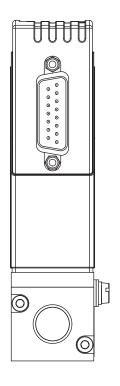
Notes regarding the selection of the unit

For the proper choice of the actuator orifice within the MFC, not only the required maximum flow rate Q_{nom} , but also the pressure values directly before and after the MFC (p_1,p_2) at this flow rate Q_{nom} should be known. In general, these pressures are not the same as the overall inlet and outlet pressures of the whole plant, because usually there are additional flow resistors (tubing, additional shut-off valves, nozzles etc.) present both before and after the controller.

Please use the request for quotation form on p. 5 to indicate the pressures *directly* before and after the MFC. If these should be unknown or not accessible to a measurement, estimates are to be made by taking into account the approximate pressure drops over the flow resistors before and after the MFC, respectively, at a flow rate of Q_{nom} . In addition, please quote the maximum inlet pressure p_{1max} to be encountered. This data is needed to make sure the actuator is able to provide a close-tight function within all the specified modes of operation.

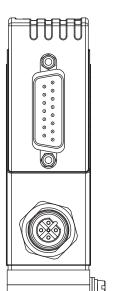

The request for quotation form on page 7 contains the relevant fluid specification. Please use in this way the experience of Bürkert engineers already in the design phase and provide us with a copy of the request containing the data of your application together with your inquiry or order.

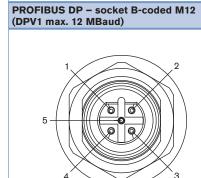
Ordering Chart for Accessories


Article	Iter	Item No.	
Connections/Cables			
Socket D-Sub 15-pin solder connection		918 274	
Hood for D-Sub socket, with screw locking		918 408	
Socket D-Sub 15-pin with 5m cable		787 737	
Socket D-Sub 15-pin with 10m cable		787 738	
Adapters ³⁾			
RS232 adapter	654 748		
PC extension cable for RS232 9-pin socket/plug 2 m	917 039		
RS422 adapter (RS485 compatible)	666 371		
USB adapter (Version 1.1, USB socket type B)	670 639		
USB connection cable 2 m	772 299		
Communication software MassFlowCommunicator	Download from www.buerkert.com		
Accessories for Fieldbus	PROFIBUS DP (B-coded)	DeviceNet, CANopen (A-coded)	
Plug M12 ⁴⁾	918 198	917 115	
Socket M12 (coupling) 4)	918 447	917 116	
Y-junction ⁴⁾		788 643	
Shut-off resistor 902 553		(on request)	
GSD-File (PROFIBUS), EDS-File (DeviceNet, CANopen) Download from www.buerker		www.buerkert.com	

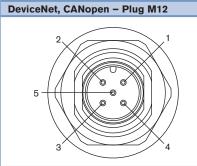
³⁾ The adapters serve mainly for initial operation or diagnosis. Those are not obligatory for continuous operation.
4) The two M12 connectors as listed above cannot be used together on the same side of the Y-junction. At least one of the two M12 connections needs to be a prefabricated cable which uses typically a thinner connector.

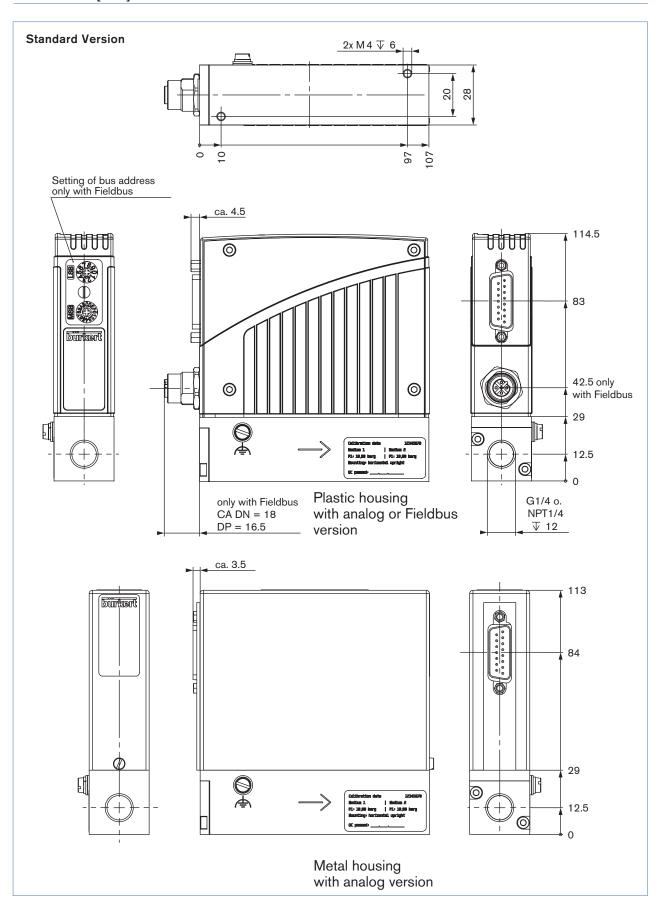
Pin Assignment


Plug D-Sub, 15-pin		Assignment	
		Analogue Control	Bus control
	1	Relay - normally closed	
	2	Relay - normally open	
	3	Relay - middle contact	
	4	GND for 24V-Supply and E	Binary inputs
	5	24V-Supply +	
	6	Only for internal company u	ise
9 0 1	7	Set value input GND	N.C. ⁵⁾
10 0 2	8	Set value input +	N.C.
11 3	9	Actual value output GND	N.C.
12 0 0 4	10	Actual value output +	N.C.
 0 5	11	DGND (for RS232) 6)	
13 0 6	12	Binary input 1	
14 0 0 7	13	Binary input 2	
15 8	14	RS232 RxD (without driver	6)
	15	RS232 TxD (without driver)	6)
	5) N.C.	: not connected (not used)	

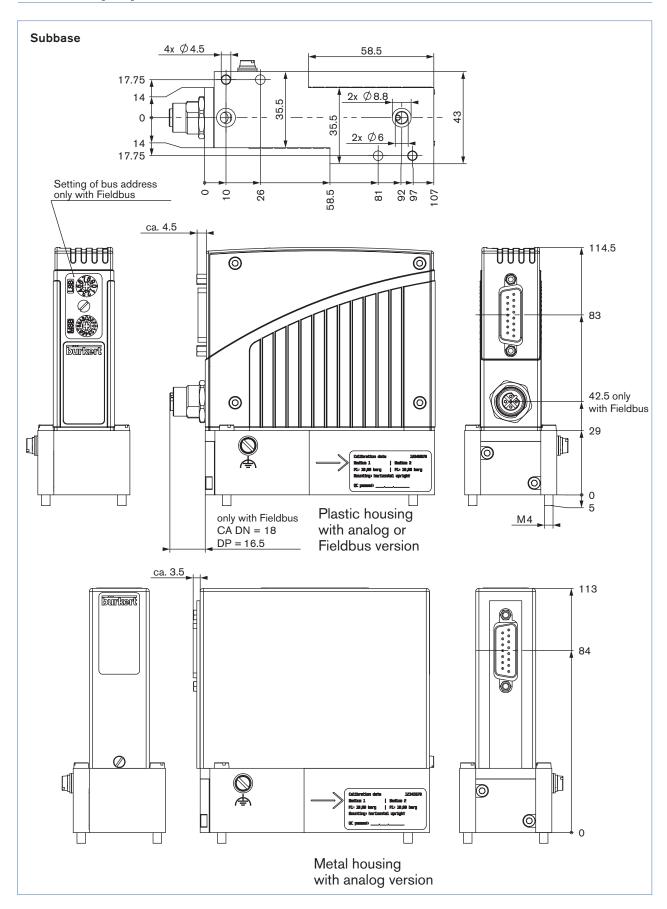

- Note:

 Optional Pin 7 and 8 with bus version as transmitter input possible


 The cable length for RS232/ Setpoint and actual value signal is limited to 30 meters.
- ⁶⁾ Driving RS232 interface only by RS232 adapter including an adaption of TTL levels



ı	Pin	Assignment
Ī	1	VDD (only for termination resistor)
I	2	RxD/ TxD - N (A-Line)
I	3	DGND
I	4	RxD/ TxD - P (B-Line)
	5	N.C.



	Pin	Assignment
	1	Shield
	2	N.C.
	3	DGND
	4	CAN_H
	5	CAN_L

Note

You can fill out the fields directly in the PDF file before printing out the form.

MFC/MFM-applications - Request for quotation

Please complete and send to your nearest Bürkert sales centre

-			out th
Company		Contact person	
Customer No		Department	
Address		Tel./Fax	
Postcode/Town		E-mail	
MFC-Application MFM-Applic	ation	Quantity Required delivery date	
Medium data			
			_
Type of gas (or gas proportion in mixtures)			
Density [90 - 95]		kg/m ^{3 7)} °C °F	
Gas temperature [°C or °F]			
Moisture content		g/m³	
Abrasive components/solid particles	no	yes, as follows:	
Fluidic data			
Flow range Q _{nom}		Min. \square $I_N/\min^{7)}$ \square I_S/\min (slpm) 8)	
		Max.	
Inlet pressure at Q _{nom} ⁹⁾ p ₁ =		bar(g) ■	
Outlet pressure at Q_{nom} p_2 =		bar(g) ■	
Max. inlet pressure P _{1max}		bar(g) ■	
MFC/MFM port connection	without screw-in fit	_	
	1/4" G-thread (DIN ISO 228/1)		
		ead (ANSI B1.2)	
		ng (acc. to specification for pipeline)	
	mm Pipeline (external Ø) inch Pipeline (external Ø)		
	Flange version		
Installation	horizontal		
	vertical, flow upwards vertical, flow downwards		
Ambient temperature		°C	
Material data			
Body	Stainless steel		
Housing	Plastic	Metal (not with type 8712/8702 and not with fieldbus)	
Seal	FKM	☐ EPDM ☐ FFKM	
Electrical data			
Signals for set point	with standard signal	with fieldbus	
and actual value		tual value	
	0-5 V	0-5 V PROFIBUS DP M12	
	0-10 V	0-10 V DeviceNet D-Sub	
	☐ 0-20 mA ☐ 4-20 mA ☐	」 0-20 mA	702)
Discon gueta all pro			
Please quote all pressure values as overpress 7) at: 1,013 bar(a) and 0°C 8) at: 1.013 bar (a) a	·	nospheric pressure bar(ü) ches with calibration pressure	
	,		
To find your nearest Bürkert facility, click on the	e orange box →		
In case of special application conditions,	Subject to alteration		
please consult for advice.	© Christian Bürkert Gmbl	oH & Co. KG 1501/4 FIJ-en 008	01883

Mass Flow Controller (MFC) for Gases

- Direct flow measurement for nominal flow rates from 10 ml_N/min to 80 l_N/min (N_2) in MEMS technology
- High accuracy and repeatability
- Short settling time
- Optional fieldbus

Type 8711 can be combined with..

Type 8619

Multichannel program controller

Type 0330

2/2 or 3/2-way solenoid valve

Type 6013

2/2-way solenoid valve

2/2 or 3/2-way solenoid valve

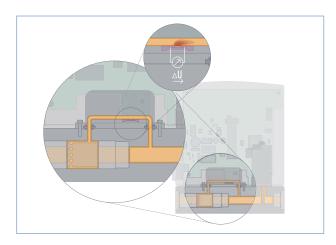
Type 8711 controls the mass flow of gases that is relevant for most applications in process technologies. The measured value provided by the chip sensor (see the description on page 2) will be compared in the digital control electronics with the predefined set point according to the signal; if a control difference is present, the control value output to the proportional valve will be modified using a PI-control algorithm. Due to the fact that

the sensor is directly in contact with the gas a very fast response time of the MFC is reached. In this way, the mass flow can be maintained at a fixed value or a predefined profile can be followed, regardless of pressure variations or other changes in the system. Type 8711 can optionally be calibrated for two different gases, the user is able to switch between these two gases.

As control element a direct-acting proportional valve guarantees a high sensitivity and a good control characteristics of the MFC. The MassFlowCommunicator software can be used for parameterisation and diagnosis. Typical application areas are gas dosing or rather the production of gas mixtures in:

- Test benches
- Bio reactors
- Heat treatment Material coating
- Burner controls
- · Fuel cell technology

Technical Data		
Nominal flow range ¹⁾	10 ml _N /min ²⁾ to 80 l _N /min (N ₂),	
(Q _{nominal})	see table on p. 2	
Turn-down ratio	1:50, higher turn-down ratio on request	
Operating gas	Neutral, non-contaminated gases, on request	
Calibration gas	Operating gas or air with conversion factor	
Max. operating pressure (Inlet pressure)	10 bar (145 psi) depending on the orifice of the valve	
Gas temperature	-10 to +70°C (-10 to +60°C with oxygen)	
Ambient temperature	-10 to +50°C	
Accuracy	±0.8% o.R. ±0.3% F.S. (after 1 min. warm up time)	
Repeatability	±0.1% F.S.	
Settling time (t95%)	< 300 ms	
Materials Body Housing Seals	Aluminium or stainless steel PC (Polycarbonate) or metal FKM, EPDM	
Port connection	NPT 1/4, G 1/4, screw-in fitting or flange, others on request	
Regulating unit (Proportional Valve) Valve orifice k _{VS} value	Normally closed 0.05 to 4.0 mm 0.00006 to 0.32 m³/h	
Electr. connection Additionally with fieldbus:	Plug D-Sub 15-pin with PROFIBUS-DP: Socket M12 5-pin with DeviceNet, CANopen: Socket M12 5-pin	
Power supply	24V DC	


Power supply	24V DC
1) The nominal flow value is the may	flow value calibrated which can be controlled. The
	nge of nominal flow rates (full scale values) possible.
2) Index N: Flow rates referred to 1.0	

Alternatively there is an Index S available which refers to 1.013 bar and 20° C

Voltage tolerance	±10%	
Residual ripple	< 2%	
Power consumption	Max. 3.5-14 W (depending on proportional valve used)	
Input signal Input impedance	0-5 V, 0-10 V, 0-20 mA or 4-20 mA > 20 kΩ (voltage), < 300 Ω (current)	
Output signal Max. current (voltage) Max. load (current)	0–5 V, 0–10 V, 0–20 mA or 4–20 mA 10 mA 600 Ω	
Digital communication via adapter possible:	RS232, Modbus RTU (via RS adapter) RS485, RS422 or USB (see accessories table on p. 3)	
Fieldbus option	PROFIBUS-DP, DeviceNet, CANopen	
Protection class	IP40	
Dimensions [mm]	see drawings 5-7	
Total weight	ca. 500 g (aluminium body)	
Installation	horizontal or vertical	
Light emitting diodes (default functions, other functions programmable)	Indication for power, Limit (with analog signals) / Communication (with fieldbus) and error	
Binary inputs (default functions, other functions programmable)	Two 1. Start Autotune 2. not assigned	
Binary output (default functions, other functions programmable)	A relay output for: 1. Limit (setpoint not reached) Max. Load: 25V, 1A, 25VA	

Measuring Principle

The actual flow rate is detected by a sensor. This operates according to a thermal principle which has the advantage of providing the mass flow which is independent on pressure and temperature.

A small part of the total gas stream is diverted into a small, specifically designed bypassing channel whitch ensures laminar flow conditions. The sensor element is a chip immersed into the wall of this flow channel. The chip, produced in MEMS technology, contains a heating resistor and two temperature sensors (thermopiles) which are arranged symmetrically upstream and downstream of the heater. The differential voltage of the thermopiles is a measure of the mass flow rate passing the flow sensor. The calibration procedure effectuates a unique assignment of the sensor signal to the total flow rate through the device.

Nominal Flow Range of Typical Gases

(other gases on request)

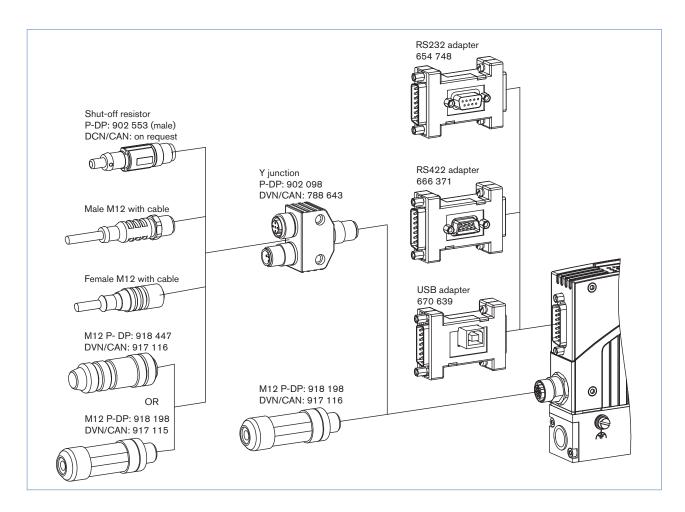
Gas	Min. Q _{nom} [I _N /min]	Max. Q _{nom} [I _N /min]
Argon	0.01	80
Helium	0.01	500
Carbon dioxide	0.02	40
Air	0.01	80
Methane	0.01	80
Oxygen	0.01	80
Nitrogen	0.01	80
Hydrogen	0.01	500

Notes Regarding the Configuration

For the proper choice of the actuator orifice within the MFC, not only the required maximum flow rate Q_{nom} , but also the pressure values directly before and after the MFC (p_1,p_2) at this flow rate Q_{nom} should be known. In general, these pressures are not the same as the overall inlet and outlet pressures of the whole plant, because usually there are additional flow resistors (tubing, additional shut-off valves, nozzles etc.) present both before and after the controller.

Please use the request for quotation form on p. 8 to indicate the pressures *directly* before and after the MFC. If these should be unknown or not accessible to a measurement, estimates are to be made by taking into account the approximate pressure drops over the flow resistors before and after the MFC, respectively, at a flow rate of Q_{nom} . In addition, please quote the maximum inlet pressure $p_{\text{1}_{\text{max}}}$ to be encountered. This data is needed to make sure the actuator is able to provide a close-tight function within all the specified modes of operation.

The request form on page 8 contains the relevant fluid specification. Using the experience of Bürkert engineers already in the design phase provide us with a copy of the request containing the necessary data together with your inquiry or order.

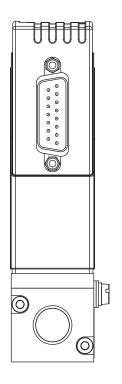


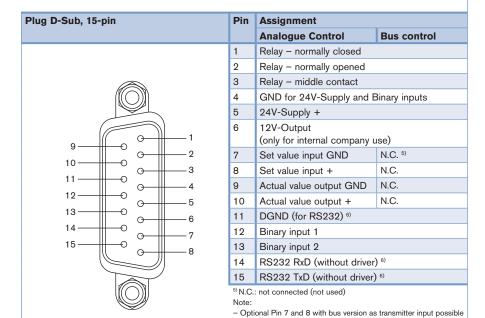
Ordering Chart for Accessories

Article	Iter	n No.		
Connections/Cables				
Socket D-Sub 15-pin solder connection		918 274		
Hood for D-Sub socket, with screw locking		918 408		
Socket D-Sub 15-pin with 5m cable		787 737		
Socket D-Sub 15-pin with 10m cable		787 738		
Adapters 3				
RS232 adapter	654 748			
PC extension cable for RS232 9-pin socket/plug 2 m	917 039			
RS422 adapter (RS485 compatible)		666 371		
USB adapter (Version 1.1, USB socket type B)		670 639		
USB connection cable 2 m	772 299			
Communication software MassFlowCommunicator	Download from www.buerkert.com			
Accessories for Fieldbus	DeviceNet, CANopen (A-coded)			
Plug M12 ⁴⁾	917 115			
Socket M12 (coupling) 4)	917 116			
Y-junction ⁴⁾	788 643			
Shut-off resistor	(on request)			
GSD-File (PROFIBUS), EDS-File (DeviceNet, CANopen)	Download from v	www.buerkert.com		

³⁾The adapters serve mainly for initial operation or diagnosis. Those are not obligatory for continuous operation.

The two M12 connection selds above cannot be used together on the same side of the Y-junction. At least one of the two M12 connection needs to be a prefabricated cable which uses typically a thinner connector.

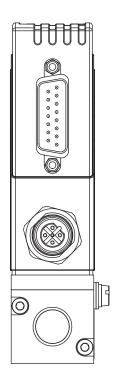


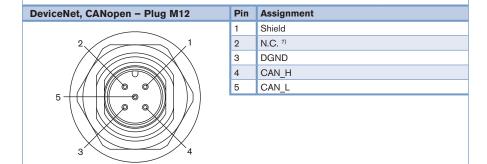


- The cable length for RS232/ Setpoint and actual value signal is

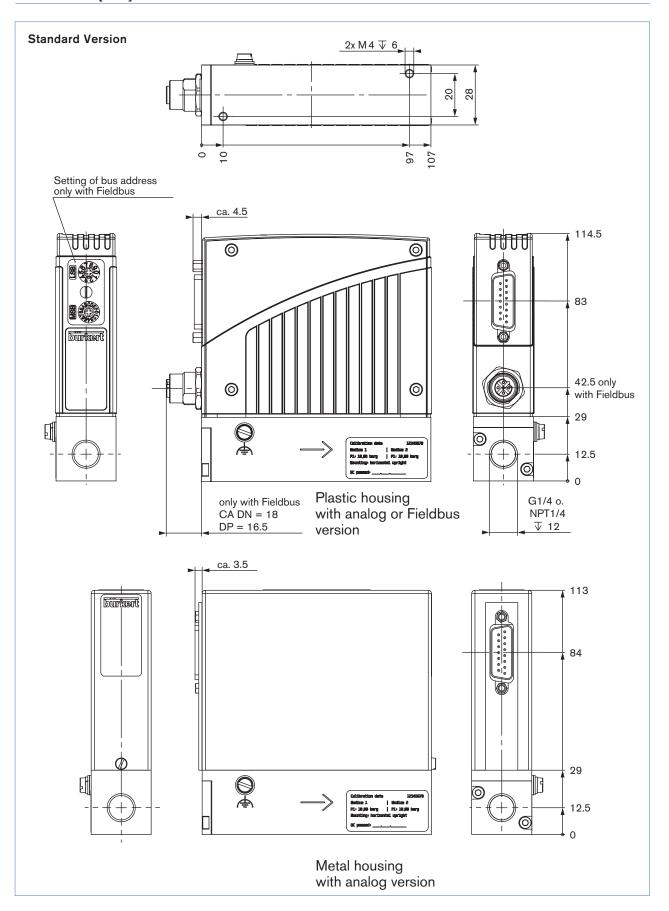
⁶⁾ Driving RS232 interface only by RS232 adapter including an

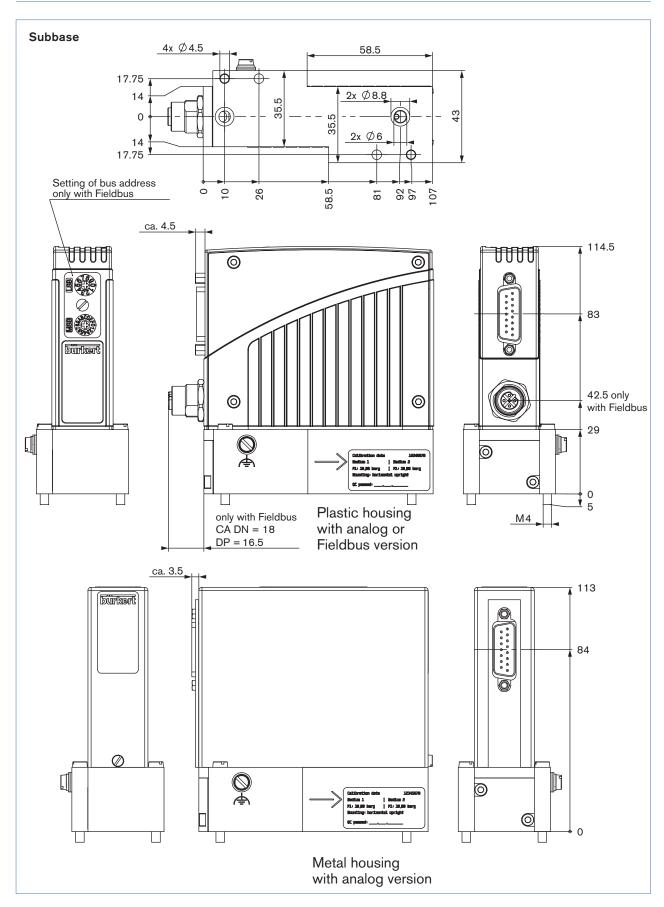
Pin Assignment




limited to 30 meters.

adaption of TTL levels


With Fieldbus Version:


PROFIBUS DP – socket B-coded M12 (DPV1 max. 12 MBaud)	Pin	Assignment
· · · · · · · · · · · · · · · · · · ·	1	VDD (only for termination resistor)
1, 2	2	RxD/ TxD - N (A-Line)
	3	DGND
	4	RxD/ TxD - P (B-Line)
	5	C (4)
5		



Note

You can fill out the fields directly in the PDF file before printing out the form.

MFC/MFM-applications - Request for quotation

Please complete and send to your nearest Bürkert sales centre

Company		Contact person	out th	
Customer No	Department			
Address		Tel./Fax		
Postcode/Town E-mail				
MFC-Application MFM-Applic	ation Q	uantity Required delive	ery date	
Medium data				
Type of gas (or gas proportion in mixtures)				
Density		kg/m³ ⁸⁾		
Gas temperature [°C or °F]		°F		
Moisture content		g/m³		
Abrasive components/solid particles	no	yes, as follows:		
Fluidic data				
Flow range Q _{nom}		Min. I _N /min ⁸⁾ I _S /min (slpm) ⁹⁾		
Trow range Q _{nom}		Max. m_N^3/h^8 kg/h		
		$\ \ \ \ \ \ \ \ \ \ \ \ \ $		
		\square I_N/h $^{8)}$ \square I_S/h $^{9)}$		
Inlet pressure at Q _{nom} 10) p ₁ =		bar(g) ■		
Outlet pressure at Q _{nom} p ₂ =		bar(g) ■		
Max. inlet pressure P _{1max}		bar(g) ■		
MFC/MFM port connection	without screw-in fit	(DIN ISO 228/1)		
	=	ad (ANSI B1.2)		
	with screw-in fitting (acc. to specification for pipeline)			
	mm Pipeline (external Ø)			
	inch Pipeline (external Ø)			
	Flange version			
Ladallatia				
Installation	horizontal vertical, flow upware	rds vertical, flow downwards		
Ambient temperature	vertical, now upwards vertical, now downwards			
Material data				
Body base Body	Aluminium Plastic	Stainless steel Metal (not with type 8712/8702 and not w	(ith fieldbus)	
Seal	FKM	EPDM	ili ilelabas)	
Floatrical data				
Electrical data				
Signals for set point	with standard signal	with fieldbus		
and actual value		ual value		
		0-5 V		
	0-20 mA	0-20 mA CANopen (only for	type 8712/8702)	
	☐ 4-20 mA	4-20 mA		
■ Please quote all pressure values as overpress				
8) at: 1,013 bar(a) and 0°C 9) at: 1.013 bar (a)	and 20°C 10) matc	ches with calibration pressure		
To find your nearest Bürkert facility, click on the	e orange box →			
In case of special application conditions,	Subject to alteration.			
please consult for advice.	© Christian Bürkert GmbH	H & Co. KG 150	01/8 EU-en 00891904	

Type 8712 can be combined with...

Type 8619Multichannel program controller

Type 0330 2/2 or 3/2-way solenoid valve

Type 8712 controls the mass flow of gases that is relevant for most applications in process technology. The measured value provided by the sensor (see the description on page 2) will be compared in the digital control electronics with the predefined set point according to the signal; if a control difference is present, the control value output to the proportional valve will be modified using a PI-control algorithm.

Due to the fact that the sensor is directly placed in the bypass channel a very short settling time of the MFC is reached. In this way, the mass flow can be maintained at a fixed value or a predefined profile can be followed, regardless of pressure variations or other changes in the system.

Type 8712 can optionally be calibrated for two different gases, the user is able to switch between these two gases. As the control element, a proportional valve working at low friction guarantees a high sensitivity and a good control characteristics of the unit. The MassFlowCommunicator software can be used for parameterisation and diagnosis.

Typical application areas are gas dosing or rather the production of gas mixtures in:

- Pharmaceutical industry
- Food and beverage
- Environmental technology
- Heat treatment

Mass Flow Controller (MFC) for Gases

- Direct flow measurement for nominal flow rates from 10 ml_N/min to 80 l_N/min (N₂) in MEMS technology
- High accuracy and repeatability
- Protection class IP65
- Optional field bus

Type 6013

solenoid valve

Type 6606 2/2 or 3/2-way

2/2-way solenoid valve

Technische Date
Nominal flow ra

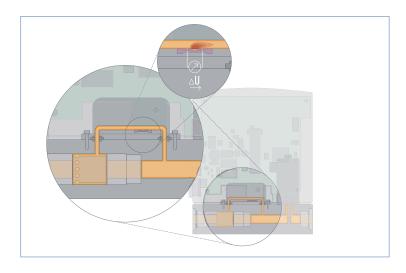
Technische Daten	
Nominal flow range 1) (Q _{nom})	0.01 ml _N /min ²⁾ to 80 l _N /min (N ₂)
Turn-down ratio	1:50, wider span on request
Operating gas	Neutral, non-contaminated gases, others available on request
Calibration gas	Operating gas or air with correcting function
Max. operating pressure (inlet pressure)	Up to max. 10 bar (145psi), depending on the orifice of the valve
Gas temperature	-10 to +70°C (-10 to +60°C with oxygen)
Ambient temperature	-10 to +50°C
Accuracy (after 1 min warm up time)	±0.8% o.R. ±0.3% F.S. (o.R.: of reading; F.S.: of full scale)
Repeatability	±0.1% F.S.
Settling time (t _{95%})	<300ms
Materials Body Housing Seals Port connection Control valve Valve orifice k _{Vs} value	Stainless steel PC (Polycarbonate) FKM, EPDM (others on request) G 1/4", NPT 1/4" or compression fitting Normally closed 0.05 to 4 mm 0.00006 to 0.32 m³/h
Electr. connection Additionally with fieldbus:	Socket M16, round, 8-pin and socket D-Sub HD15, 15-pin With PROFIBUS-DP: Socket M12 5-pin (for IP65) or D-Sub 9-pin With DeviceNet/CANopen: Plug M12 5-pin (for IP65) or D-Sub 9-pin
Operating voltage	24V DC
Voltage tolerance	±10%
Residual ripple	<2%
Power consumption	3.5-14 W (depending on version)

¹⁾The nominal flow value is the max. flow value calibrated which can be controlled. The nominal flow range defines the range of nominal flow rates (full scale values) possible.

Alternatively there is an Index S available which refers to 1.013 bar and 20° C.

²⁾ Index N: Flow rates referred to 1.013 bar and 0° C.

Technical data


Technical data (cont.)			
Set point (signal setting) Feed impedance	0–5V, 0–10V, 0–20 mA or 4–20 mA >20 k Ω (voltage) <300 Ω (current)		
Output signal (signal output) Max. current, volt. output Max. load, current output	0–5 V, 0–10 V, 0–20 mA or 4–20 mA 10 mA 600 Ω		
Digital communication via adapter possible:	RS232, Modbus RTU (via RS interface) RS485, RS422 or USB (see accessories table on p. 3)		
Fieldbus option	PROFIBUS-DP, DeviceNet, CANopen (D-Sub HD15 covered with sealed plate with fieldbus MFC)		
Type of protection (with connected cables)	IP65		
Dimensions [mm] (without fitting)	See drawings on p. 6-8		
Total weight	1200 g (Valve internally)		
Mounting position	Horizontal or vertical		
Light emitting diodes (Default, other functions programmable)	Indication for 1. Power, 2. Communication 3. Limit 4. Error		
Binary inputs (Default, other functions programmable)	Three 1. Start Autotune 2. Not assigned, Switch between gases when cal. for two gases 3. Not assigned		
Binary outputs (Default, other functions programmable)	Two relay outputs 1. Limit (desired value can not be achieved) 2. Error (e.g. sensor fault) Load capacity: max. 60 V, 1 A, 60 VA		

Nominal Flow Range of Typical Gases

(other gases on request)

Gas	Min. Q _{nom} [I _N /min]	Max. Q _{nom} [I _N /min]
Argon	0.01	80
Helium	0.01	500
Carbon dioxide	0.02	40
Air	0.01	80
Methane	0.01	80
Oxygen	0.01	80
Nitrogen	0.01	80
Hydrogen	0.01	500

Measuring Principle

The actual flow rate is detected by a sensor. This operates according to a thermal principle which has the advantage of providing the mass flow which is independent on pressure and temperature.

A small part of the total gas stream is diverted into a small, specifically designed bypassing channel whitch ensures laminar flow conditions.

The sensor element is a chip immersed into the wall of this flow channel. The chip, produced in MEMS technology, contains a heating resistor and two temperature sensors (thermopiles) which are arranged symmetrically upstream and downstream of the heater. The differential voltage of the thermopiles is a measure of the mass flow rate passing the flow sensor. The calibration procedure effectuates a unique assignment of the sensor signal to the total flow rate through the device.

Notes Regarding the Configuration

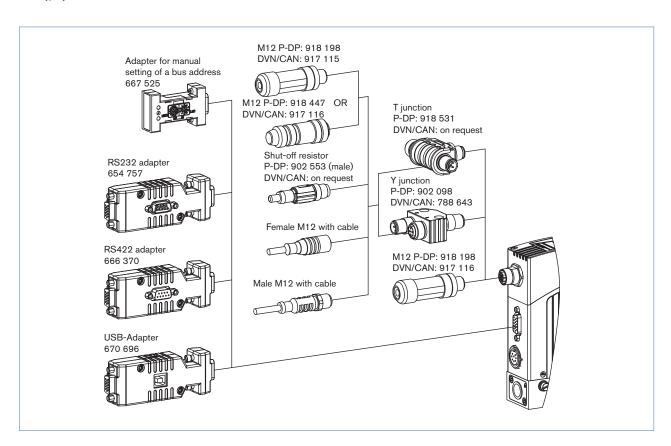
For the proper choice of the actuator orifice within the MFC, not only the required maximum flow rate Q_{nom} , but also the pressure values directly before and after the MFC (p_1,p_2) at this flow rate Q_{nom} should be known. In general, these pressures are not the same as the overall inlet and outlet pressures of the whole plant, because usually there are additional flow resistors (tubing, additional shut-off valves, nozzles etc.) present both before and after the controller.

or not accessible to a measurement, estimates are to be made by taking into account the approximate pressure drops over the flow resistors before and after the MFC, respectively, at a flow rate of Ω_{nom} .

In addition, please quote the maximum inlet pressure p_{1max} to be encountered. This data is needed to make sure the actuator is able to provide a close-tight function within all the specified modes of operation.

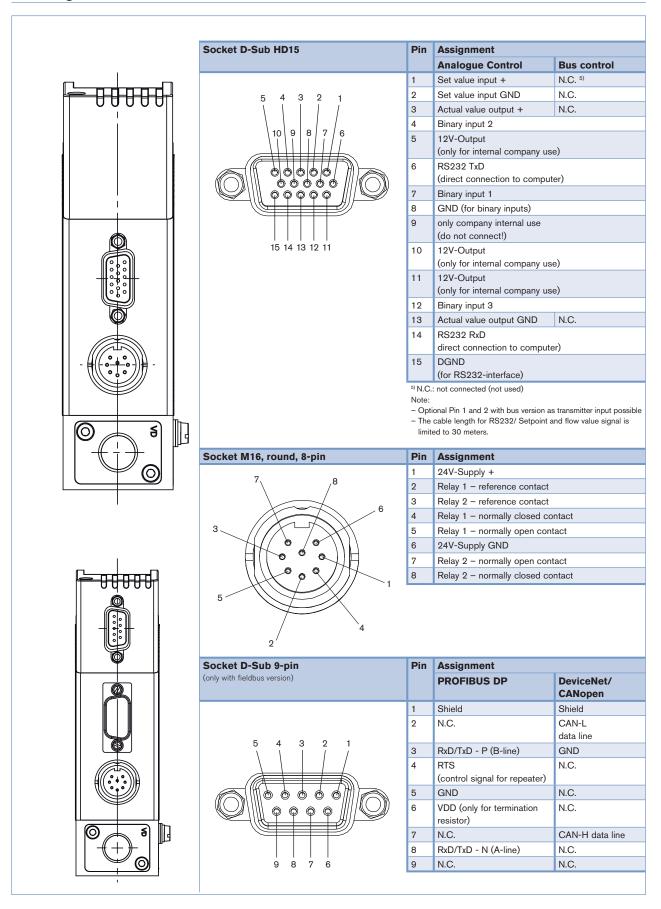
Please use the request for quotation form on p. 9 to indicate the pressures *directly* before and after the MFC. If these should be unknown

Please use the form on page 8 for the information about your specific requirements..

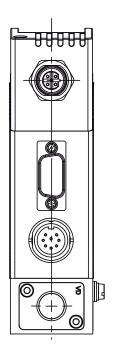


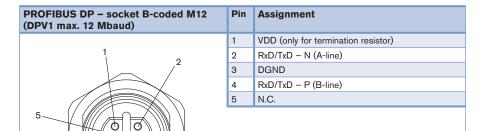
Ordering Chart for Accessories

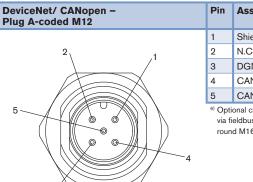
Article	Item No.	
Connectors/Cables	-	
Round plug M16 8-pin (solder connection)		918 299
Round plug M16 8-pin with 5m cable		787 733
Round plug M16 8-pin with 10m cable		787 734
Plug D-Sub HD15 15-pin with 5m cable		787 735
Plug D-Sub HD15 15-pin with 10m cable		787 736
Adapters ³⁾		
RS232 adapter for connection to a computer, connection with an extension cable (item no. 9	654 757	
Extension cable for RS232 9-pin socket/plug 2 m	917 039	
RS422-Adapter (RS485 compatible)	666 370	
USB-Adapter (Version 1.1, USB socket type B)		670 696
USB connection cable 2 m		772 299
Adapter for manual setting of bus address	667 525	
Software MassFlowCommunicator	Download unter www.buerkert.com	
Accessories for Fieldbus	PROFIBUS DP (B-codiert)	DeviceNet/ CAN- open (A-codiert)
M12-Plug ⁴⁾ 918 198		917 115
M12-socket (coupling) 4) 918 447		917 116
Y-junction ⁴⁾	902 098	788 643
T-junction	918 531	(auf Anfrage)
Shut-off resistor	902 553	(auf Anfrage)
GSD-Datei (PROFIBUS), EDS-Datei (DeviceNet, CANopen)	Download unter	www.buerkert.com


³⁾ The adapters serve mainly for initial operation or diagnosis. Those are not obligatory for continuous operation.

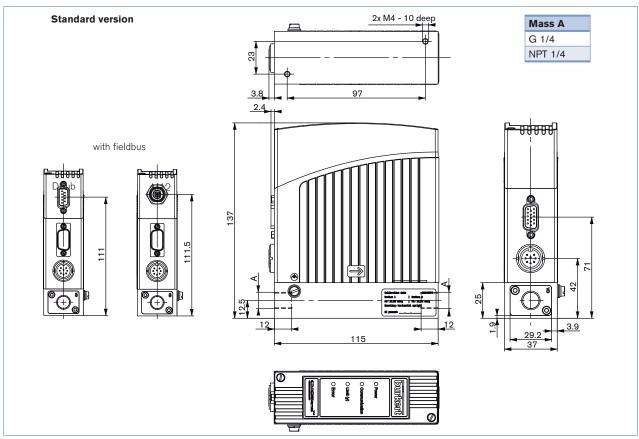
⁴⁾The two M12 connectors as listed above cannot be used together on the same side of the Y-junction. At least one of the two M12 connection needs to be a prefabricated cable which uses typiclly a thinner connector.

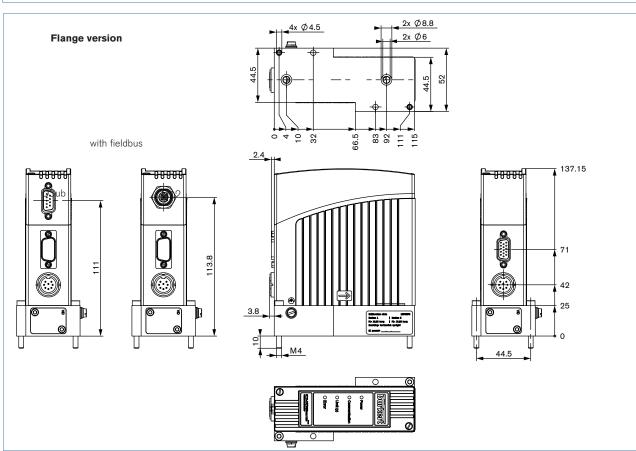



Pin Assignment



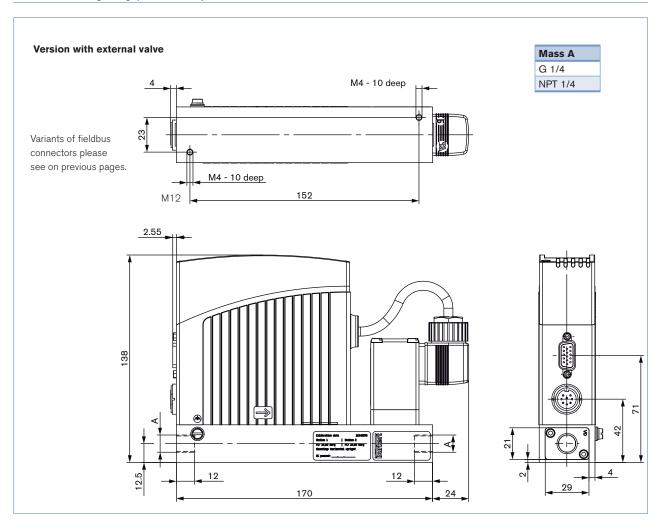
Pin Assignment (continued)





	Pin	Assignment
	1	Shield
	2	N.C. ⁶⁾
	3	DGND
	4	CAN_H
	5	CAN_L

⁶⁾ Optional configuration with 24V DC possible for power supply via fieldbus connector. With this no power supply connection on round M16 plug needed.



Dimensions [mm] (continued)

Note

You can fill out the fields directly in the PDF file before printing out the form.

MFC/MFM-applications - Request for quotation

Please complete and send to your nearest Bürkert sales centre

Company		Contact person				
Customer No		Department				
Address		Tel./Fax				
Postcode/Town		E-mail				
MFC-Application MFM-Applic	cation	Quantity	Required delivery date			
Medium data						
Type of gas (or gas proportion in mixtures) Density		kg/m³ ⁷⁾				
Gas temperature [°C or °F]	°F		°F			
Moisture content	g/m³					
Abrasive components/solid particles	no	yes, as fo	llows:			
Fluidic data						
Flow range Q_{nom} Inlet pressure at $Q_{nom}^{\ \ 9}$ Outlet pressure at Q_{nom} p_1 = Outlet pressure at Q_{nom} p_2 = Max. inlet pressure P_{1max} MFC/MFM port connection	1/4" NPT-thr	Min.	I _s /min (slpm) ⁸⁾ kg/h cm _s ³ /min (sccm) ⁸⁾ l _s /h ⁸⁾			
Installation Ambient temperature	horizontal vertical, flow upwa	ards vertical, fl	ow downwards			
Material data						
Body Housing Seal Electrical data	Aluminium Plastic FKM	Stainless steel Metal (not with EPDM	type 8712/8702 and not with fieldbus)			
Signals for set point	with standard signal	with fie	ldbus			
and actual value	Setpoint ac ☐ 0-5 V ☐ 0-10 V ☐ 0-20 mA ☐ 4-20 mA ☐	0-10 V Devi	DFIBUS DP			
■ Please quote all pressure values as overpressures with respect to atmospheric pressure bar(ü) 7) at: 1,013 bar(a) and 0°C 8) at: 1.013 bar (a) and 20°C 9) matches with calibration pressure						
To find your nearest Bürkert facility, click on the orange box $ ightarrow$						
In case of special application conditions, please consult for advice.	Subject to alteration © Christian Bürke	on. rt GmbH & Co. KG	1501/8_EU-en_00891857			

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астана +7 (7172) 69-68-15 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Владимир +7 (4922) 49-51-33 Волгоград +7 (8442) 45-94-42 Воронеж +7 (4732) 12-26-70 Екатеринбург +7 (343) 302-14-75 Иваново +7 (4932) 70-02-95 Ижевск +7 (3412) 20-90-75 Иркутск +7 (3952) 56-24-09 Йошкар-Ола +7 (8362) 38-66-61 Казань +7 (843) 207-19-05

Калининград +7 (4012) 72-21-36 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб. Челны +7 (8552) 91-01-32 Ниж. Новгород +7 (831) 200-34-65 Нижневартовск +7 (3466) 48-22-23 Нижнекамск +7 (8555) 24-47-85

Новороссийск +7 (8617) 30-82-64 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Первоуральск +7 (3439) 26-01-18 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саранск +7 (8342) 22-95-16 Саратов +7 (845) 239-86-35 Смоленск +7 (4812) 51-55-32

Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Сызрань +7 (8464) 33-50-64 Сыктывкар +7 (8212) 28-83-02 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Чебоксары +7 (8352) 28-50-89 Челябинск +7 (351) 277-89-65 Череповец +7 (8202) 49-07-18 Ярославль +7 (4852) 67-02-35

сайт: burkert.pro-solution.ru | эл. почта: btk@pro-solution.ru телефон: 8 800 511 88 70