

Type 3280 can be combined with ...

Type 8611 Compact PI Controller

The direct-acting motor control valve Type 3280 serves as a regulating element in various control loops. A linear stepper motor as actuator drives the valve, which comes in a compact and robust housing. Analogue setpoint signals are processed by the integrated control electronics. Due to an elastomeric seat seal the valve closes tight up to the DN specific nominal pressure (see ordering chart on p. 5). In case of power failure, the actual valve position will be kept. The motor's power consumption to hold a specific opening position of the valve is nearly zero. The motor needs power only during set point changes. This key feature can reduce the energy consumption of a plant dramatically and thus make it more efficient. This valve is particularly suited for demanding control tasks (high control range, accurate repeatability etc.).

Circuit function

2-way valve for continuous control, motor driven, remains in position without further electrical power

2/2-Way Proportional Valve (motor-driven)

- Seat valve with stepper motor actuator isolated from flow path
- Excellent range (1:100)
- Low power consumption
- Fast response
- Orifice sizes 2 to 6 mm
- Port connection 1/4" and 3/8"

Technical data	
Materials	
Body	Brass or stainless steel
Housing	PC (Polycarbonate), PPS (Polyphenylene sulfide)
Seals	FKM or NBR, others on request
Medium	Neutral gases, liquids
Pressure Range 1)	0 to 6 bar
Closure time	2.5 s (0 to 100% stroke)
Fluid temperature	0 to +70 °C
Ambient temperature	-10 to +60 °C
Viscosity	Max. 600 mm ² /s (cSt)
Power supply	24 V DC ± 10% (max. residual ripple 10%)
Power consumption	Max. 8 W (depending on motor control),
	<1 W in holding position
Duty cycle	Up to 100 % (depending on fluid and ambient
	temperature)
Port connection	G 1/4, G 3/8, NPT 1/4, NPT 3/8
Electrical connection	M12 connector, 8-pin, male
Input signal	4-20mA or 0-10 V
Input impedance	60 Ω (with current input)
	22 k Ω (with voltage input)
Output signal	Load capacity: 1030V, max 100mA, PNP
	(Output signal active, if valve is closed)
Typical control data 2)	
Hysteresis	< 5%
Repeatability	<1 % FS
Sensitivity	<1 % FS
Span	1:100
Protection class - valve	IP 50
Installation	As required, preferably with actuator upright
Status of LED	White: Normal operation and powered,
	Yellow: Valve opened,
	Green: Valve closed,
	Red: Failure
Dimensions	See drawings on page 4
Weight	~0.7 kg

¹⁾ Pressure data [bar]: Overpressure with respect to atmospheric pressure

²⁾ Characteristic data of control behaviour depends on process conditions

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астана +7 (7172) 69-68-15 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Владимир +7 (4922) 49-51-33 Волгоград +7 (8442) 45-94-42 Воронеж +7 (4732) 12-26-70 Екатеринбург +7 (343) 302-14-75 Иваново +7 (4932) 70-02-95 Ижевск +7 (3412) 20-90-75 Иркутск +7 (3952) 56-24-09 Йошкар-Ола +7 (8362) 38-66-61 Казань +7 (843) 207-19-05

Калининград +7 (4012) 72-21-36 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб.Челны +7 (8552) 91-01-32 Ниж.Новгород +7 (831) 200-34-65 Нижневартовск +7 (3466) 48-22-23 Нижнекамск +7 (8555) 24-47-85 Новороссийск +7 (8617) 30-82-64 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Первоуральск +7 (3439) 26-01-18 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саранск +7 (8342) 22-95-16 Саратов +7 (845) 239-86-35 Смоленск +7 (4812) 51-55-32 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Сызрань +7 (8464) 33-50-64 Сыктывкар +7 (8212) 28-83-02 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Чебоксары +7 (8352) 28-50-89 Челябинск +7 (351) 277-89-65 Череповец +7 (8202) 49-07-18 Ярославль +7 (4852) 67-02-35

сайт: burkert.pro-solution.ru | эл. почта: btk@pro-solution.ru телефон: 8 800 511 88 70

[m³/h] ³⁾

 $[m_N^3/h]^{4)}$

[bar] ⁵⁾

Advice for valve sizing

In continuous flow applications, the choice of an appropriate valve size is much more important than with on/off valves. The optimum size should be selected such that the resulting flow in the system is not unnecessarily reduced by the valve. However, a sufficient part of the pressure drop should be taken across the valve even when it is fully opened.

Recommended value: Pressure drop of valve > 25 % of total pressure drop within the system

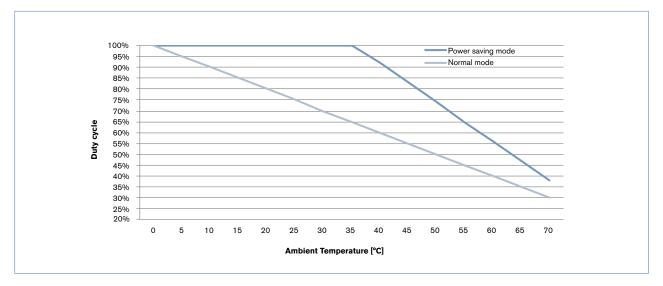
Otherwise, the ideal, linear valve curve characteristic is changed. If the differential pressure (difference between inlet and outlet pressure) exceeds half the value of the nominal pressure, the characteristics may change.

For that reason take advantage of Bürkert competent engineering services during the planning phase!

Determination of the k_v value

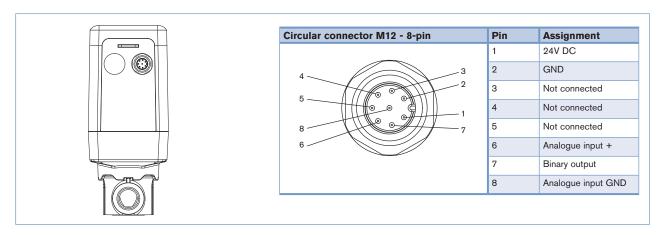
Pressure drop	k _v value for liquids [m³/h]	k _v value for gases [m³/h]
Subcritical $p_2 > \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$= \frac{Q_{\rm N}}{514} \ \sqrt{\frac{T_1 \ \rho_{\rm N}}{p_2 \ \Delta p}}$
Supercritical $p_2 < \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$= \frac{Q_N}{257p_1}\sqrt{T_1\rho_N}$

k_v Flow coefficient \mathbf{Q}_{N} Standard flow rate

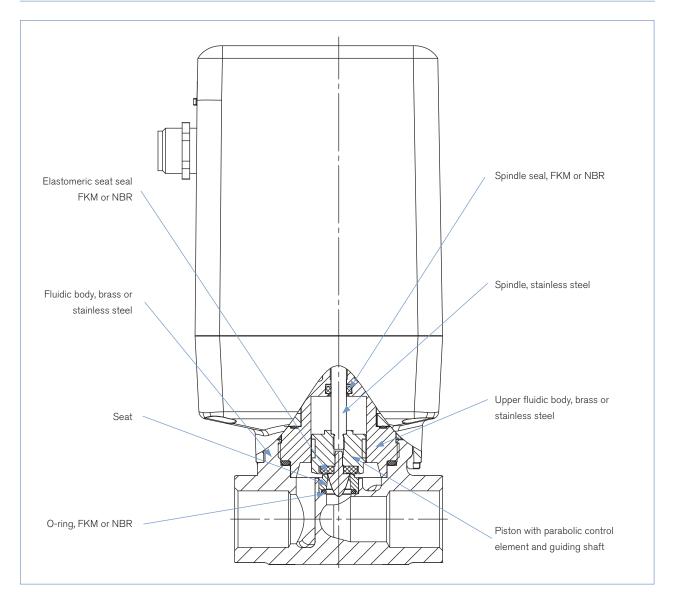

- p, Inlet pressure
- [bar] ⁵⁾ Outlet pressure p_2
- Δp Differential pressure $p_1 p_2$ [bar] [kg/m³]
- Density ρ
- Standard density [kg/m³] $\rho_{\rm M}$
- [(273+t)K] T_1 medium temperature
- ³⁾ Measured with water, $\Delta p = 1$ bar, differential pressure over the valve
- 4) Standard conditions at
- 1,013 bar and 0 °C (273K)
- 5) Absolute pressure

Once the k_v value needed for the application has been calculated, you can compare it with the k_{vs} values shown in the ordering chart. The k_{vs} must be higher than the k_v value of the application, but neither too high, nor too close - as a recommendation: 10% higher.

Duty Cycle Derating Curve

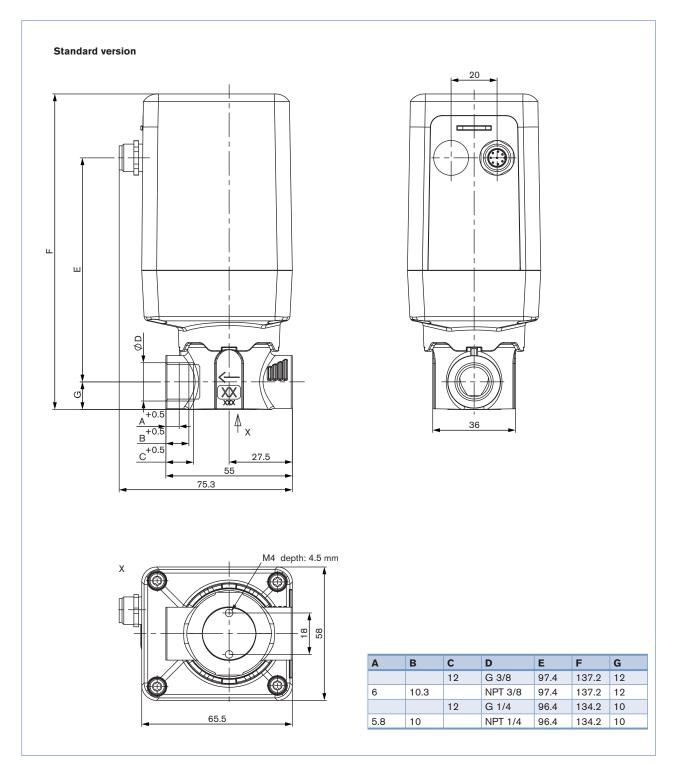

For motor valves it is essential to know the duty cycle during operation. Self-heating of the motor limits the maximum duty cycle. High ambient temperatures amplify the risk of damage due to overheating. The diagram below shows the suggested duty cycles dependent on the ambient temperature. Running the motor control valve in the power saving mode (lower actuator force) allows higher duty cycles. The motor is optimized for the valve function regarding dimensions, power consumption and costs.

Note: Operating the valve beyond the suggested duty cycles leads to a drastically reduced lifetime of the valve.



burkert

Pin Assignment



Materials

Dimensions [mm]

burkert

burkert

Ordering Chart

Valve function	Orifice [mm]	Port Connection	Seal material	k _{vs} value water [m³/h] ⁶⁾	Nominal pressure [barg] ⁷⁾	ltem no. brass	ltem no. stainless steel	
Control valve,	2	G 1/4	FKM	0.15	6	268 611	268 620	
without safety			NBR	0.15	6	268 616	268 624	
position in case		NPT 1/4	FKM	0.15	6	268 628	268 636	
of power failure			NBR	0.15	6	268 632	268 640	
	3	3	G 1/4	FKM	0.3	6	268 613	268 621
			NBR	0.3	6	268 617	268 625	
		NPT 1/4	FKM	0.3	6	268 629	268 637	
			NBR	0.3	6	268 633	268 641	
	4	G 3/8	FKM	0.5	6	268 614	268 622	
			NBR	0.5	6	268 618	268 626	
		NPT 3/8	FKM	0.5	6	268 630	268 638	
			NBR	0.5	6	268 634	268 642	
	6	G 3/8	FKM	0.9	6	268 615	268 623	
			NBR	0.9	6	268 619	268 627	
		NPT 3/8	FKM	0.9	6	268 631	268 639	
			NBR	0.9	6	268 635	268 643	

 $^{6)}\mbox{Measured}$ with water (20°C) and 1 bar pressure drop over valve $^{7)}\mbox{Fuel}$ gases may differ

Ordering Chart for Accessories

Article	ltem No.
M12 connector with 2m cable, 8 pins	919 061
M12 connector with 2m cable, 8 pins (shielded cable)	918 991

Type 3285 can be combined with ...

Type 8611 Compact PI Controller

The direct-acting motor control valve Type 3285 is used as the regulating unit in various control loops. A stepper motor as actuator drives the valve which is incorporated in a compact and robust housing. Analogue setpoint signals are processed by the integrated control electronics. The drive shaft shifts a very smooth ceramic disc over a second fixed ceramic disc. The fixed ceramic disc is simultaneously the valve seat. By turning the ceramic disc the valve opens. The seat tightness is achieved by the very smooth surface of the stacked ceramic discs. In case of power failure the actual valve position will be kept. The motor's power consumption to hold a specific opening position of the valve is nearly zero. The motor needs power only during set point changes. This key feature can reduce the energy consumption of a plant dramatically and thus make it more efficient. This valve is particularly suitable for demanding control tasks (high control range, dry gases, etc.).

Circuit function

2-way valve for continuous control, motor driven, remains in position without further electrical power

2/2-Way Proportional Valve (motor-driven)

- Disc valve with stepper motor Actuator isolated from flow path
- Excellent range (1:100)
- Low power consumption
- Orifice sizes 8 ... 25 mm
- Port connection 1/2", 3/4" and 1"

Technical data	
Materials	
Body	Brass or stainless steel
Housing	PC (Polycarbonate), PPS (Polyphenylene sulfide)
Seals	FKM or NBR, others on request
Seat sealing	Technical ceramics
Medium	Neutral gases, liquids
Seat leakage based on	Shut-off class IV
IEC/EN 60534-4	
Pressure Range ¹⁾	06 bar
Closure time	Ca. 4 sec
Medium temperature	0+70 °C
Ambient temperature	-10 +60 °C
Power supply	24 V DC ± 10% (max. residual ripple 10%)
Power consumption	Max. 12 W (depending on motor control)
	Ca. 1 W in holding position
Duty cycle	Up to 100 % (depending on fluid and ambient
	temperature)
Port connection	G 1/2, G 3/4, G 1, NPT 1/2, NPT 3/4, NPT 1
Electrical connection	M12 connector, 8-pin, male
Input signal	4-20mA or 0-10 V
Input impedance	60 Ω (with current input)
	22 kΩ (with voltage input)
Output signal	Load capacity: 1030V, max 100mA, PNP
	(Output signal active, if valve is closed)
Typical control data ²⁾	
Hysteresis	< 5%
Repeatability	<1 % FS
Sensitivity	<1 % FS
Span	1:100
Protection class - valve	IP 50
	As required, preferably with actuator upright
Status of LED	White: Normal operation and powered,
	Yellow: Valve opened, Green: Valve closed.
	Red: Failure
Dimensions	See drawings
Weight	~ 800g (DN8) 1500g (DN25)
Weight	1000g (DN0) 1000g (DN20)

¹⁾Pressure data [bar]: Overpressure with respect to atmospheric pressure

²⁾ Characteristic data of control behaviour depends on process conditions

[m³/h] ³⁾

 $[m_N^3/h]^{4)}$

[bar] 5)

Advice for valve sizing

In continuous flow applications, the choice of an appropriate valve size is much more important than with on/off valves. The optimum size should be selected such that the resulting flow in the system is not unnecessarily reduced by the valve. However, a sufficient part of the pressure drop should be taken across the valve even when it is fully opened.

Recommended value: Pressure drop of valve > 25 % of total pressure drop within the system

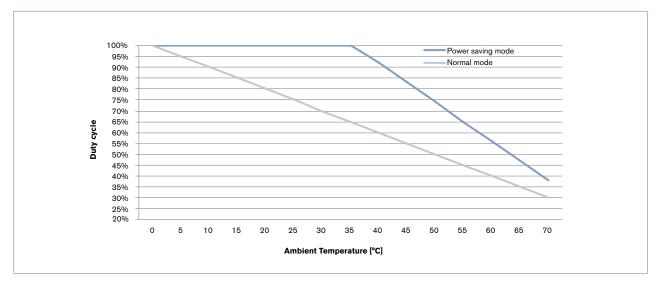
Otherwise, the ideal, linear valve curve characteristic is changed. If the differential pressure (difference between inlet and outlet pressure) exceeds half the value of the nominal pressure, the characteristics may change.

For that reason take advantage of Bürkert competent engineering services during the planning phase!

Determination of the k_v value

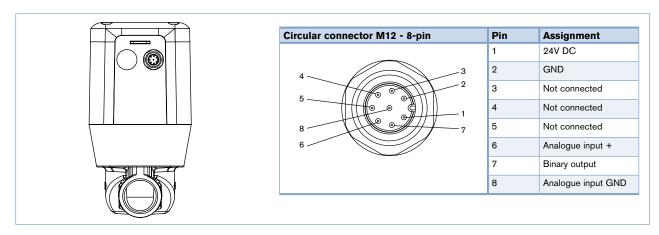
Pressure drop	k _v value for liquids [m³/h]	k _v value for gases [m³/h]
Subcritical $p_2 > \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$= \frac{Q_{\rm N}}{514} \ \sqrt{\frac{T_1 \ \rho_{\rm N}}{p_2 \ \Delta p}}$
Supercritical $p_2 < \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$= \frac{Q_N}{257p_1}\sqrt{T_1\rho_N}$

k_v Flow coefficient \mathbf{Q}_{N} Standard flow rate

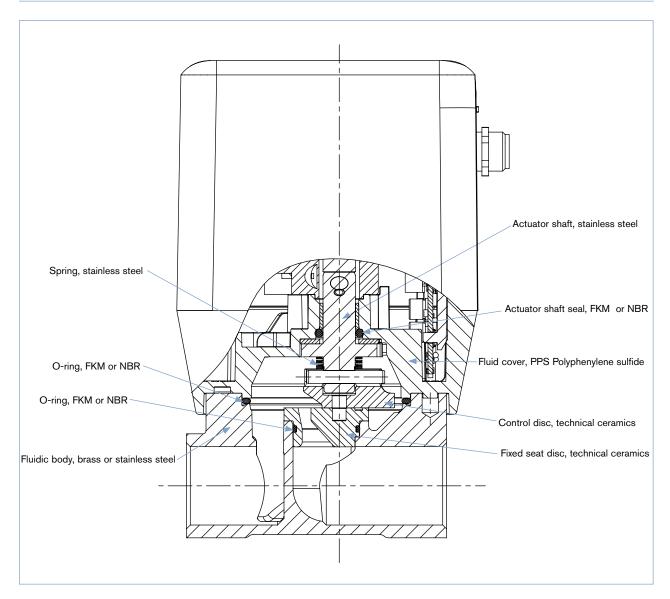

- Inlet pressure p_1
- [bar] ⁵⁾ Outlet pressure p_2
- Δp Differential pressure $p_1 p_2$ [bar] [kg/m³]
- Density ρ
- Standard density [kg/m³] $\rho_{\rm M}$
- [(273+t)K] T_1 medium temperature
- ³⁾ Measured with water, $\Delta p = 1$ bar, differential pressure over the valve
- 4) Standard conditions at
- 1,013 bar and 0 °C (273K)
- 5) Absolute pressure

Once the k_v value needed for the application has been calculated, you can compare it with the k_{vs} values shown in the ordering chart. The k_{vs} must be higher than the k_v value of the application, but neither too high, nor too close - as a recommendation: 10% higher.

Duty Cycle Derating Curve

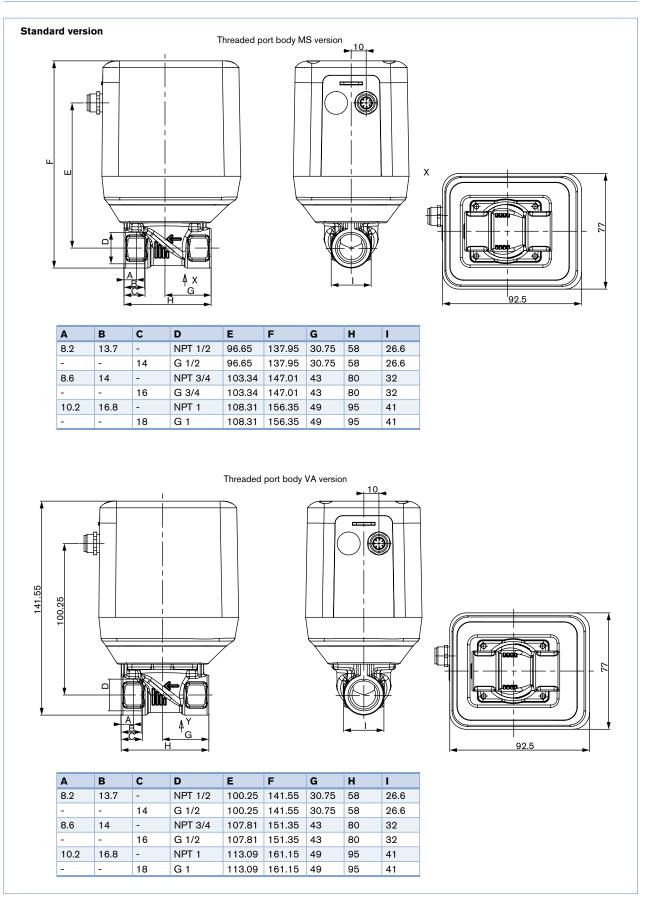

For motor valves it is essential to know the duty cycle during operation. Self-heating of the motor limits the maximum duty cycle. High ambient temperatures amplify the risk of damage due to overheating. The diagram below shows the suggested duty cycles dependent on the ambient temperature. Running the motor control valve in the power saving mode (lower actuator force) allows higher duty cycles. The motor is optimized for the valve function regarding dimensions, power consumption and costs.

Note: Operating the valve beyond the suggested duty cycles leads to a drastically reduced lifetime of the valve.



burkert

Pin Assignment


Materials

Dimensions [mm]

burkert

Ordering Chart

Valve function	Orifice [mm]	Port connec- tion	Seal material	k _{vs} value water [m³/h] ^{s)}	Nominal pressure ⁷⁾ [barg]	ltem no. Brass	ltem no. Stainless steel	
Control valve,	8	G 1/2	FKM	1.8	6	269 244	269 256	
without safety			NBR	1.8	6	269 250	269 262	
position in case of		NPT 1/2	FKM	1.8	6	269 268	269 280	
power failure			NBR	1.8	6	269 274	269 286	
	10	G 1/2	FKM	2.5	6	269 245	269 257	
			NBR	2.5	6	269 251	269 263	
		NPT 1/2	FKM	2.5	6	269 269	269 281	
			NBR	2.5	6	269 275	269 287	
	12	G 3/4	FKM	3.9	6	269 246	269 258	
			NBR	3.9	6	269 252	269 264	
		NPT 3/4	FKM	3.9	6	269 270	269 282	
			NBR	3.9	6	269 276	269 288	
	15	G 3/4	FKM	6.0	6	269 247	269 259	
			NBR	6.0	6	269 253	269 265	
		NPT 3/4	FKM	6.0	6	269 271	269 283	
				NBR	6.0	6	269 277	269 289
	20	G 1	FKM	8.8	6	269 248	269 260	
			NBR	8.8	6	269 254	269 266	
		NPT 1	FKM	8.8	6	269 272	269 284	
			NBR	8.8	6	269 278	269 290	
	25	G 1	FKM	12.3	6	On request	On request	
			NBR	12.3	6	On request	On request	
		NPT 1	FKM	12.3	6	On request	On request	
			NBR	12.3	6	On request	On request	

⁶⁾ Measured with water (20°C) and 1 bar pressure drop over valve ⁷⁾ Fuel gases may differ

Ordering Chart for Accessories

Article	ltem No.
M12 connector with 2m cable, 8 pins	919 061
M12 connector with 2m cable, 8 pins (shielded cable)	918 991

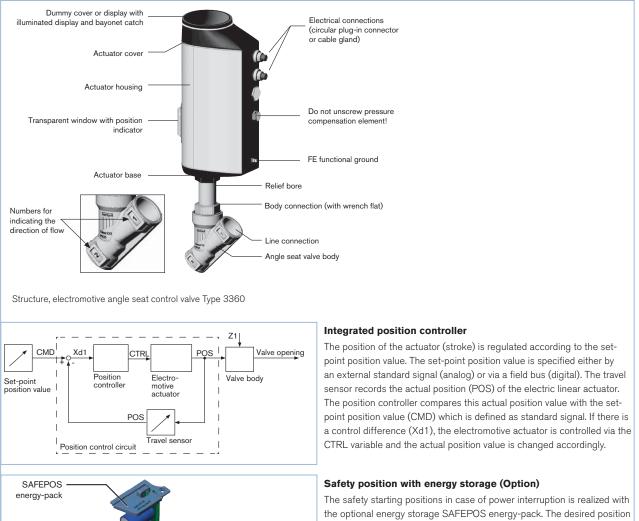
The innovative process controller Bürkert valve Type 3360 is the solution when it comes to control tasks under demanding operating conditions. The electromotive actuator with ball screw positions the control come with highest precision. A unique feature is its high positioning speed of 6 mm/s, that reacts quasi delay-free to process signals, and can be varied according to customer demands. Pressure variations or shocks in the medium aren't transferred to the valve position. If necessary, the safety position can be approached by an optional energy storage in case of power failure. Actuator and valve are adapted perfectly to each other with closed design and robust surface. This ensures the hygienic requirements of a fast and residue-free cleaning. Harsh environment are no problem for the Type 3360 because of the protection class IP65 / IP67 and its high impact and vibration resistance. Unrivalled cycle life and sealing integrity is guaranteed by the proven self adjusting spindle packing with exchangeable V-seals. The fieldbus suitable Type 3360 provides many helpful functions for process monitoring, valve diagnostics and predictive maintenance and thus offers the decisive advantage of a modern process automation.

Electromotive process valve -2-way angle-seat control valve

- good and fast control
- weather, impact and vibration resistant design
- easy cleaning by its design according hygienic demands
- many diagnostic functions by monitoring of valve and operation data

for highest control accuracy

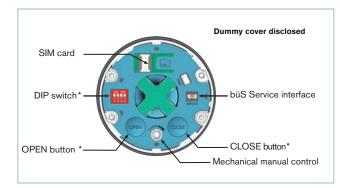
Technical data				
Kvs values	5 53 m³/h			
Port size	DN 15 DN 50			
Operating pressure	16 bar / 1600 kPa / 232 psi			
Port connections				
 thread 	• G, RC, NPT (EN ISO 228-1, ISO 7/1 /DIN EN 10226-2, ASME B 1.20.1)			
 weld ends 	• EN ISO 1127 / ISO 4200, DIN 11850 R2, ASME BPE, BS 4825-			
	1, SMS 3008			
• clamp	ISO 2852, DIN 32676, ASME BPE, BS 4825			
Medium	Neutral gases, water, alcohol, oils, fuel, hydraulic mediums, salt solu- tion, alkali solutions, organic solvents, steam			
Viscosity	max 600 mm ² /s			
Media temperature	-10+185 °C (seat sealing steel/steel)			
media temperature	-10+185 °C (seat sealing PEEK/steel)			
	-10+130 °C (seat sealing PTFE/steel)			
Ambient temperature	-25 °C +65 °C (without touch display)			
•	-25 °C +60 °C (with touch display)			
	-25 °C +55 °C (with SAFEPOS energy storage)			
	Note: Derating see temperature chart			
Seat leakage according	Shut-off class III and IV for steel/steel			
IEC 534-4/EN 1349	Shut-off class VI for PTFE/steel and PEEK/steel			
Safety position at power failure	with SAFEPOS energy-pack: opened, closed or free programmable without SAFEPOS energy-pack: blocked in last position			
Power supply	24 V DC +/- 10% (max. residual ripple 10%)			
Closing time	2.3 4.3 s (depending on stroke)			
Travel speed	6 mm/s			
Duty cycle	100%			
Protection class	IP65 / IP67			
Analogue control	Setpoint: 0-20 mA, 4-20 mA, 0-5 V, 0-10 V actual value optional			
Digital control (fieldbus)	EtherNet/IP, Modbus/TCP, Profinet			
Approval and Conformity	FDA, EGV 1935/2004			

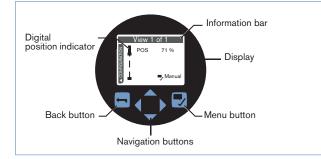


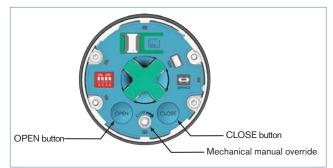
Structure and function

The electromotive linear actuator consists of a brushless direct current motor, gears and a threaded spindle. The valve spindle, which is connected to the threaded spindle, transfers the force to the control cone. The electronic control system of the position controller is actuated either via standard signals (analog) or via a field bus (digital). Optionally there is the energy pack (SAFEPOS energy-pack) for the device. If the supply voltage fails, the energy pack supplies the actuator with the required energy to move the valves into the required position which can be adjusted via a menu.

The valve position can be manually changed in 2 ways. Either over an electrical manual control or over mechanical manual control, if no supply voltage applied. The device can be set and operated either via 2 capacitive buttons and 4 DIP switches or optionally on a display with touch-screen. There is also the option of setting the device via the büs Service interfache and by using the PC software "Bürkert-Communicator".


The intelligent process valve Type 3360 offers the operator options for process monitoring, valve diagnostics and predictive maintenance. Internal measurements for the operating state are evaluated and, if issued as a warning or error message. This signal, for example, undue environmental and process conditions, functional deviations of components or the state of the energy accumulator. Internal measurements for operating state are evaluated and, possible a warning or error message is issued. This signal indicates, for example, bad environmental and process conditions, functional deviations of components or the state of the energy accumulator.




the optional energy storage SAFEPOS energy-pack. The desired position is adjusted from the menu. Here any intermediate position can be defined in addition to the end positions (NO / NC). The energy storage has a lifespan of up to 10 years, depending on the operating conditions. The power of the energy storage is monitored and a warning is displayed to indicate its life is coming to an end. The memory is designed as a plug-in module making it easy to exchange. Without energy storage, the valve remains in the last position.

Controls and indicators

Devices without display module

In the version without control display the basic functions are operated by 4 DIP switches and 2 pushbuttons. These are located under the dummy cover which can be removed manual by turning. Through the büS service access, the device can also be configured in detail with the Bürkert communicator software. For this, the optional USB-büS interface kit is required.

Robust display with control buttons (optional)

The robust display module is easy to use, it configurates and displays all the required functions. In addition to the start screen you can also switch to the configuration view and user-specified views as needed. All functions of the device without display module like büS-Service interface are available, too.

Manual and electrical operation

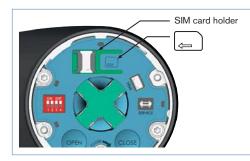
The manual override for mechanical operation of the valve is located under the dummy cover or the display module.

Electrical manual override for the procedure is carried out directly on the touch screen, or in the version without a display by two buttons below the dummy cover.

Mechanical position indicator Valve open

360°- LED Illuminated ring

To display the device status, the valve end position and the operating condition, a visible 360° LED illuminated ring is mounted around the dummy cover or the display module. The LED ring lights up, flashes or flashes in one or different colors. Depending on customer requirements 4 different LED modes can be selected (Namur mode, valve mode without warnings, valve mode with warnings, LED off)

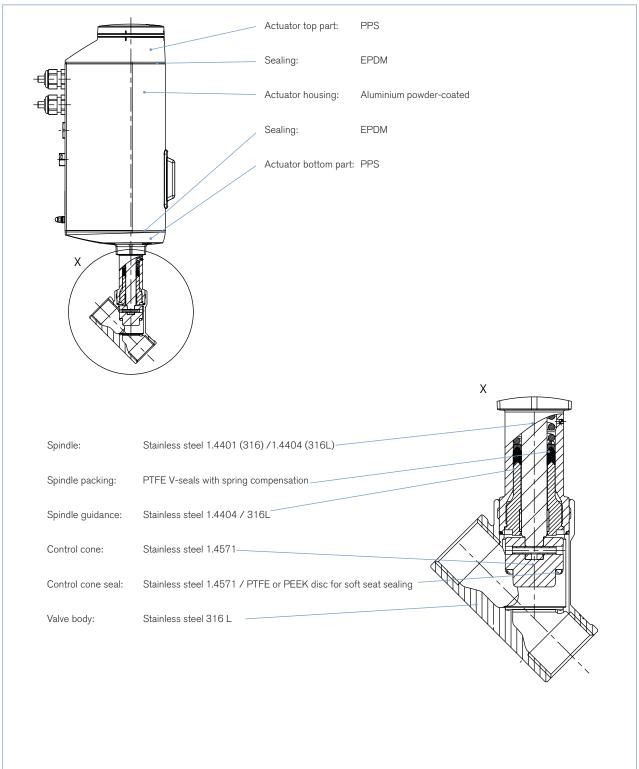

Mechanical position indicator

The mechanical position indicator also indicates when the supply voltage of the current valve position fails

Controls and indicators, continued

SIM card as data storage (option)

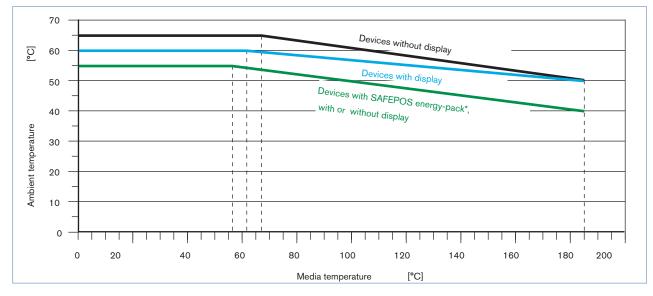
With the SIM card optional device-specific values and user settings can be saved and quickly transferred to another device.


büS service interface Connection for CAN adapter or USB-büS interface set

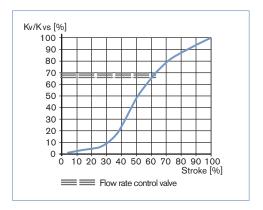
büS service interface

The büS service interface connects the device to the communicator software on a PC, laptop or smartphone. From there, a configuration of the device or failure diagnosis can be performed.

Design and materials view

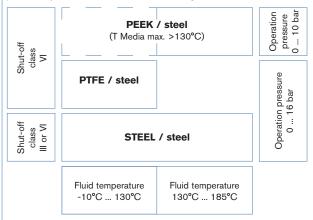

Note: The angle-seat control valve **type 3360** could be delivered with miscellaneous port connection (thread, weld ends and clamp), there are not represented in the picture, but are made with same material as the valve body.

Technical data


Temperature chart

The maximum allowable ambient temperature and media temperature influence each other. The maximum allowable temperature curves of different device variants can be seen in the temperature chart.

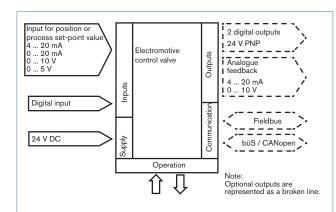
Flow characteristic


Modified equi-percentile flow characteristic, engineered for a quick response during peak flow demand and fine control at lower flow. Theoretical control ratio (KvS : Kv0): 50:1 KvR-value at 5% of stroke

Selection chart for seat sealing

Seat sealing type steel / steel is recommended for shut-off class III and IV.

Seat sealing with PTFE is used for shut-off class VI, if fluid temperature is <130 °C. If the maximum fluid temperature exceeds 130 °C temporarily or permanently, then PEEK is used for seat sealing.



Port con-	(tube)	Media pressure	/ seat sealing	Leakage class /	Leakage class / seat seal- ing			Kv-values with	stroke [m3/h]			Kvs-value
		Stainless steel o. PTFE Stainless steel	PEEK / Stainless steel	PTFE o. PEEK / Stainless steel	Stainless steel / Stainless steel							
[mm]	[inch]	[bar]	[bar]			5%	10%	30%	50 %	70 %	90%	[m3/h]
15	1/2	16	-	VI	IV	0.16	0.17	0.4	2.7	4.0	4.8	5.0
20	3/4	16	10	VI	IV	0.26	0.27	1.1	5.9	8.3	9.6	10.0
25	1	16	10	VI	IV	0.34	0.36	1.5	8.9	13.0	15.4	16.0
32	1.25	16	10	VI	IV	0.40	0.46	2.5	13.9	19.5	23.4	25.0
40	1.5	10	6	VI	III	0.48	0.66	5.1	20.0	28.3	34.5	36.0
50	2	6	_	VI	III	0.87	1.2	4.0	26.0	40.3	48.0	53.0

Electrical control

Electrical data					
Protection class	3 acc. to DIN EN 61140				
Electrical connections	Cable gland, 2 x M20 or 2 circular plug-in connector M12, 5-pin and 8-pin				
Operating voltage	24 V DC ± 10 % max. residual ripple 10 %				
Operating current [A]*	max. 3 A including actuator at max. load and charging current of the optional SAFEPOS energy-pack (charging current approx. 1 A)				
Lifelong energy storage SAFEPOS energy-pack	up to 10 years (depending on operating conditions)				
Electronic without actuator [W]*	min. 2 W, max. 5 W				
Control					
Input analogue:	galvanically isolated from the supply voltage and analog output 0/420 mA (input resistance 60 Ω) 05/10 V (input resistance 22 k Ω)				
Output analogue:	Max. current 10 mA (for voltage output 05/10 V) Bürde (Last) 0560 Ω (for current output 0/420 mA)				
Output digital:	current limit 100 mA				
Input digital:	05 V = log "0", 1030 V = log "1" inverted input reversed accordingly				
Communication interface:	Connection to PC via USB büS interface set				
Communication Software:	Bürkert communicator				

Electrical control and interface

The position of the actuator is regulated according to the set-point position value. The set-point position value is specified either by an external standard signal (analog) or via a field bus (digital).

Analogue Control

For analogue control 2 variants are available for the inputs and outputs and the connection interface

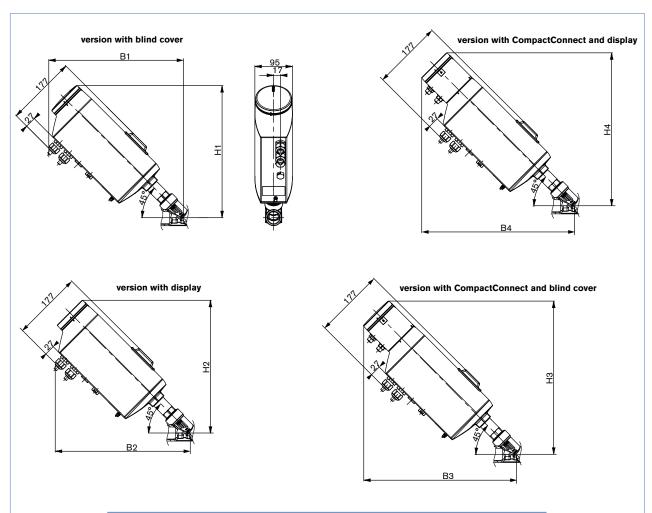
Input and output:

1 analogue input, 1 binary input
 1 analogue output, 2 binary output (option)

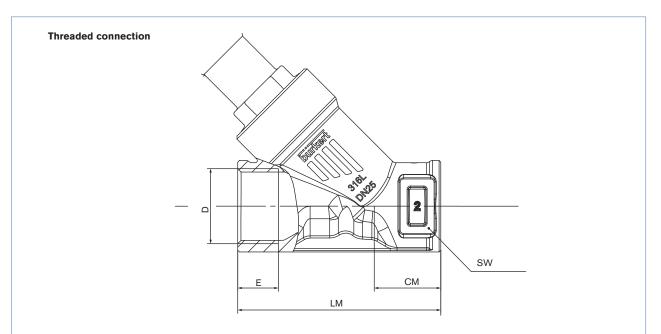
Interface:

* cable gland with connection terminal

* M12 circular connectors M12 (option)

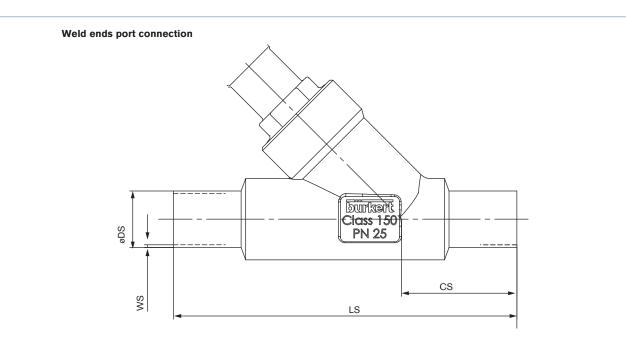

Fieldbus: EtherNet/IP, PROFINET, Modbus TCP (option)

The Fieldbus Gateway for EtherNet / IP, PROFINET and Modbus TCP is integrated into a special module. It has 2 fieldbus connections with 4-pin M12 circular connectors. Under the gateway housing cover are the interfaces for the fieldbus connection and status LEDs. If there is a need to be include it in a network then the configuration of the Ethernet can be performed via the web server.


Dimensions [mm] - valve type 3360 and valve system

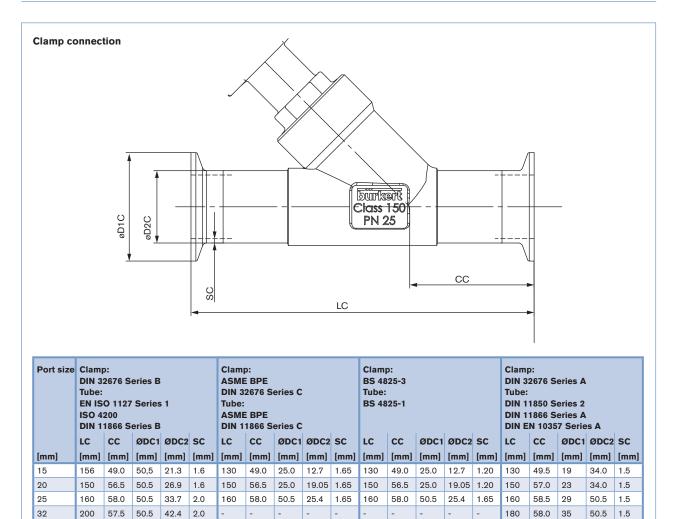
Port connection					Width [mm]			
[mm]	H1	H2	H3	H4	B1	B2	B3	B4
15	306	308	359	359	314	314	359	359
20	314	316	367	367	321	321	367	367
25	333	336	387	387	341	341	387	387
32	347	349	400	400	354	354	400	400
40	349	351	402	402	356	356	402	402
50	362	364	416	416	370	370	416	416

Dimensions [mm] - body valve type 3360



G, RC, NPT (EN ISO 228-1, ISO 7/1 /DIN EN 10226-2, ASME B 1.20.1)

				(3	N	рт	R	с
Port size [mm]	CM [mm]	LM [mm]	SW [mm]	D [mm]	E [mm]	D [mm]	E [mm]	D [mm]	E [mm]
15	24	65	27	G 1/2	14	NPT 1/2	13.7	RC 1/2	13.2
20	27	75	34	G 3/4	16	NPT 3/4	14.0	RC 3/4	14.5
25	29.5	90	41	G 1	18	NPT 1	16.8	RC 1	16.8
32	36	110	50	G 1 1/4	16	NPT 1 1/4	17.3	RC 1 1/4	19.1
40	35	120	55	G 1 1/2	18	NPT 1 1/2	17.3	RC 1 1/2	19.1
50	45	150	70	G 2	24	NPT 2	17.6	RC 2	23.4


Dimensions [mm] - body valve type 3360

Port size	ISO 42) 1127 S 00 866 Ser				866 Ser	ies A Series A	L	ASME DIN 11	BPE 866 Ser	ies C	
	CS	LS	ØDS	WS	CS	LS	ØDS	ws	CS	LS	ØDS	WS
[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
15	34	100	21.3	1.6	34	100	19	1.5	34	100	12.7	1.65
20	39	115	26.9	2.0	39	115	23	1.5	39	115	19.05	1.65
25	43	130	33.7	2.0	43	130	29	1.5	43	130	25.4	1.65
32	40	145	42.4	2.0	40	145	35	1.5	-	-	-	-
40	49	160	48.3	2.0	49	160	41	1.5	49	160	38.1	1.65
50	50	175	60.3	2.6	50	175	53	1.5	50	175	50.8	1.65

Dimensions [mm] - body valve type 3360

-

69.0

77.5

50.5

38.1

64.0 50.8 1.65

1.65

200

230

69.0 50.5

77.5 64.0 50.8

38.1

1.65

1.65

200

230

69.5 41

78.0 53

50.5 1.5

64.0 1.5

200

230

40

50

200

230

69.0

64.0

77.5 77.5 60.3 2.6

48.3 2.0

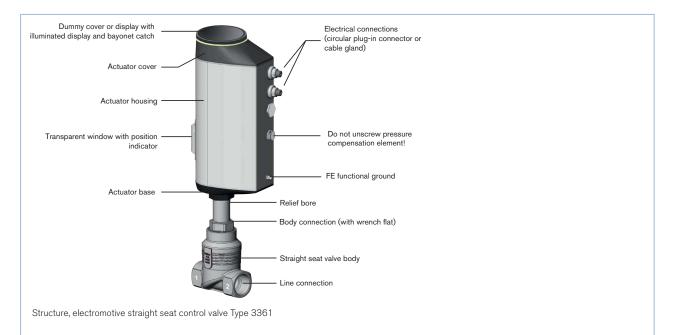
The innovative process controller Bürkert valve Type 3361 is the solution when it comes to demanding control tasks and operating conditions. The electromotive actuator with ball screw positions the control cone with highest precision. A unique feature is its high positioning speed of 6 mm/s, that reacts quasi delay-free to process signals, and can be varied according to customer demands. Pressure variations or shocks in the medium aren't transferred to the valve position. Each flow optimized valve housing can be equipped with up to 5 different valve seats for a precise adaptation according to customer needs. If necessary, the safety position can be approached by an optional energy storage in case of power failure. Actuator and valve are adapted perfectly to each other with closed design and robust surface. This ensures the hygienic requirements of a fast and residue-free cleaning. Harsh environment are no problem for the Type 3361 because of the protection class IP65 / IP67 and its high impact and vibration resistance. Unrivalled cycle life and sealing integrity is guaranteed by the proven self adjusting spindle packing with exchangeable V-seals. The fieldbus suitable Type 3361 provides many helpful functions for process monitoring, valve diagnostics and predictive maintenance and thus offers the decisive advantage of a modern process automation.

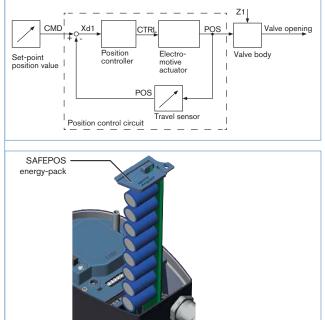
Electromotive process valve - 2-way globe control valve

- high precise and fast flow control
- several Kvs value per port size due to removable trim kit
- weather, impact and vibration resistant design
- easy cleaning by its design according hygienic demands
- many diagnostic functions by monitoring of valve and operation data

for highest control accuracy

Technical data	
Kvs-Werte	0.4 37 m³/h
Port and seat size	DN 10 DN 50 / DN 3 DN 50
Operating pressure	16 bar / 1600 kPa / 232 psi
Port connections Flange Thread Weld ends 	 DIN EN 1092-1, ANSI B 16.5, JIS 10K G, RC, NPT (EN ISO 228-1, ISO 7/1 /DIN EN 10226-2, ASME B 1.20.1) EN ISO 1127 / ISO 4200, DIN 11850 R2, ASME BPE, BS 4825-1, SMS 3008
Clamp	• ISO 2852, DIN 32676, ASME BPE, BS 4825
Medium	Neutral Gas, water, alcohol, oil, fuels, hydraulic mediums, salt soluti- on, alkali solutions, organic solvents, steam
Viscosity	max. 600 mm²/s
Media temperature	-10+185 °C (seat sealing steel/steel) -10+185 °C (seat sealing PEEK/steel) -10+130 °C (seat sealing PTFE/steel)
Ambient temperature	-25 °C +65 °C (without touch display) -25 °C +60 °C (with touch display) -25 °C +55 °C (with SAFEPOS energy storage) Note: Derating see temperature chart
Seat leakage according to IEC 534-4/EN 1349	Shut-off class III and IV for steel/steel Shut-off class VI for PTFE/steel and PEEK/steel
Safety position at power failure	with SAFEPOS energy-pack: opened, closed or free programmable without SAFEPOS energy-pack: blocked in last position
Power supply	24 V DC +/- 10% (max. residual ripple 10%)
Closing time (100% stroke)	3.3 4.5 s (je nach Hub)
Travel speed	6 mm/s
Duty cycle	100%
Protection class	IP65 / IP67
Analogue control	Setpoint: 0-20 mA, 4-20 mA, 0-5 V, 0-10 V actual value optional
Digital control (fieldbus)	EtherNet/IP, Modbus/TCP, Profinet
Approval and Conformity	FDA, EGV 1935/2004




Structure and function

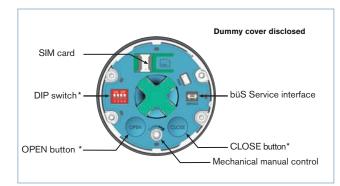
The electromotive linear actuator consists of a brushless direct current motor, gears and a threaded spindle. The valve spindle, which is connected to the threaded spindle, transfers the force to the control cone. The electronic control system of the position controller is actuated either via standard signals (analog) or via a field bus (digital). Optionally there is the energy pack (SAFEPOS energy-pack) for the device. If the supply voltage fails, the energy pack supplies the actuator with the required energy to move the valves into the required position which can be adjusted via a menu.

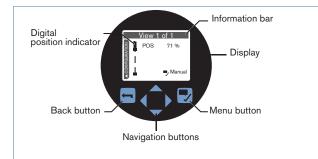
The valve position can be manually changed in 2 ways. Either over an electrical manual control or over mechanical manual control, if no supply voltage applied. The device can be set and operated either via 2 capacitive buttons and 4 DIP switches or optionally on a display with touch-screen. There is also the option of setting the device via the büs Service interfache and by using the PC software "Bürkert-Communicator".

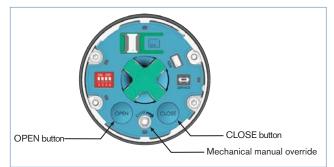
The intelligent process valve Type 3360 offers the operator options for process monitoring, valve diagnostics and predictive maintenance. Internal measurements for the operating state are evaluated and, if issued as a warning or error message. This signal, for example, undue environmental and process conditions, functional deviations of components or the state of the energy accumulator. Internal measurements for operating state are evaluated and, possible a warning or error message is issued. This signal indicates, for example, bad environmental and process conditions, functional deviations of components or the state of the energy accumulator. A special feature of the globe control valve is the screwed valve seat which can be replaced to reduce the nominal diameter.

Integrated position controller

The position of the actuator (stroke) is regulated according to the setpoint position value. The set-point position value is specified either by an external standard signal (analog) or via a field bus (digital). The travel sensor records the actual position (POS) of the electric linear actuator. The position controller compares this actual position value with the setpoint position value (CMD) which is defined as standard signal. If there is a control difference (Xd1), the electromotive actuator is controlled via the CTRL variable and the actual position value is changed accordingly.


Safety position with energy storage (Option)


The safety starting positions in case of power interruption is realized with the optional energy storage SAFEPOS energy-pack. The desired position is adjusted from the menu. Here any intermediate position can be defined in addition to the end positions (NO / NC). The energy storage has a lifespan of up to 10 years, depending on the operating conditions. The power of the energy storage is monitored and a warning is displayed to indicate its life is coming to an end. The memory is designed as a plug-in module making it easy to exchange. Without energy storage, the valve remains in the last position.



Controls and indicators

Devices without display module

In the version without control display the basic functions are operated by 4 DIP switches and 2 pushbuttons. These are located under the dummy cover which can be removed manual by turning. Through the büS service access, the device can also be configured in detail with the Bürkert communicator software. For this, the optional USB-büS interface kit is required.

Robust display with control buttons (optional)

The robust display module is easy to use, it configurates and displays all the required functions. In addition to the start screen you can also switch to the configuration view and user-specified views as needed. All functions of the device without display module like büS-Service interface are available too.

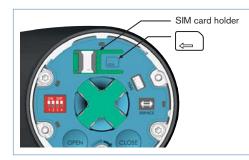
Manual and electrical operation

The manual override for mechanical operation of the valve is located under the dummy cover or the display module.

Electrical manual override for the procedure is carried out directly on the touch screen, or in the version without a display by two buttons below the dummy cover.

Mechanical position indicator Valve open

360°- LED Illuminated ring


To display the device status, the valve timing and the operating condition a visible 360° LED illuminated ring is mounted around the dummy cover or the display module. The LED ring lights up, flashes or flashes in one or different colors. Depending on customer requirements 4 different LED modes can be selected (Namur mode, valve mode without warnings, valve mode with warnings, LED off)

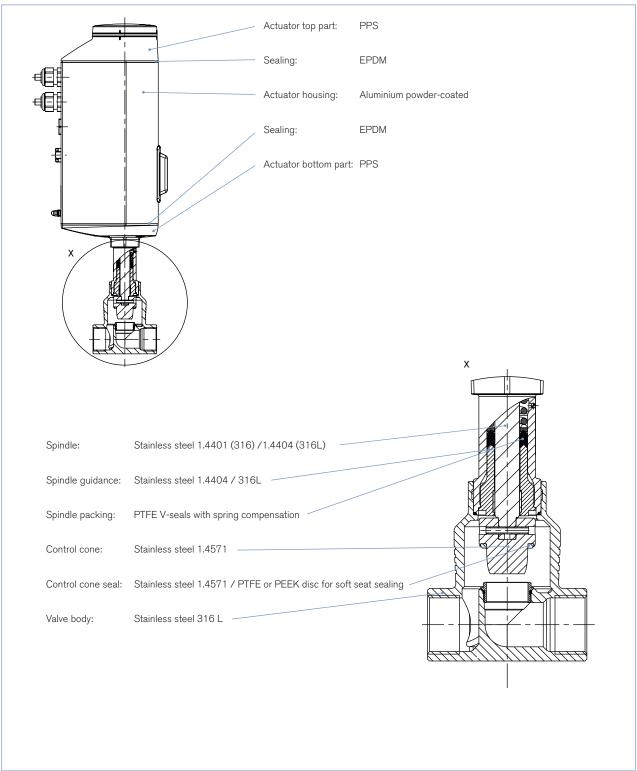
Mechanical position indicator

The mechanical position indicator also indicates when the supply voltage of the current valve position fails

Controls and indicators, continued

SIM card as data storage (option)

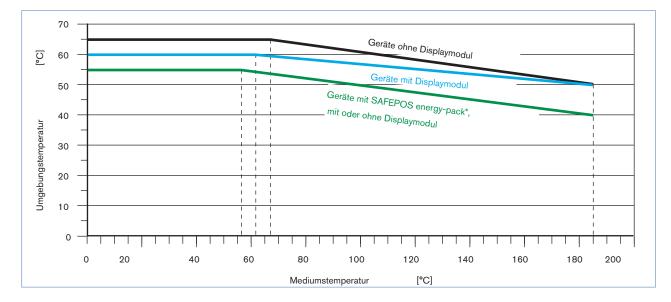
With the SIM card optional device-specific values and user settings can be saved and quickly transferred to another device.


büS service interface Connection for CAN adapter or USB-büS interface set

büS service interface

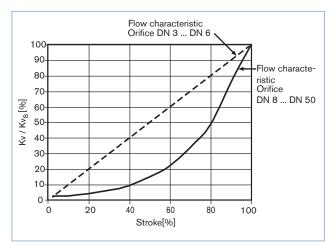
The büS service interface connects the device to the communicator software on a PC, laptop or smartphone. From there, a configuration of the device or failure diagnosis can be performed.

Design and materials view


Note: The globe control valve **Type 3361** could be delivered with miscellaneous port connection (thread, weld ends and clamp), there are not be represented in the picture, but are made with same material as the valve body.

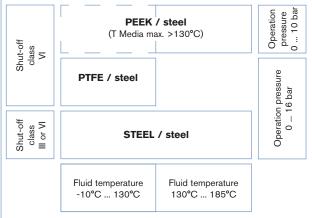
Technical data

Temperature chart


The maximum allowable ambient temperature and media temperature influence each other. The maximum allowable temperature curves of different device variants can be seen in the temperature chart.

Flow characteristic

The straight seat control valve shows different characteristics depending on the orifice.


- Equal percentage of parabolic cone for valve seats with orifice DN 8... DN 50 $\,$
- Linear cone for valve seats of the orifice DN 4 and DN 6, flow characteristic according to DIN / IEC 534-2-4
- Theoretical setting ratio (KvS: Kv0) Orifice DN 8...DN 50: 50: 1 Orifice DN 6: 25: 1 Orifice DN 4: 10: 1
- KvR value⁹⁾ at 5 % of the stroke for DN > 10 mm KvR value at 10 % of the stroke for DN \leq 10 mm

Selection chart for seat sealing

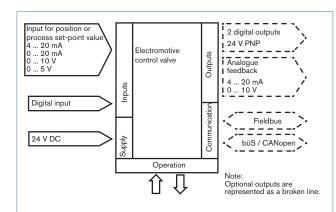
Seat sealing type steel / steel is recommended for shut-off class III and IV.

Seat sealing with PTFE is used for shut-off class VI, if fluid temperature is <130 °C. If the maximum fluid temperature exceeds 130°C temporarily or permanently, then PEEK is used for seat sealing.

9) KvR value= the smallest KV value at which the angularity tolerance according to DIN / IEC 534-2-4 can still be maintained.

Technical data, continued

Flow below seat


Port	connection (tube)		Seat size		Operating pressure seal/		Leakeage class	seal / conical seat			Kv value	with stroke [m³/h]			Kvs value
[mm]	[inch]	[mm]	[inch]	stain- less steel/ stain- less steel [bar]	PTFE/ stain- less steel [bar]	PEEK/ stain- less steel [bar]	stain- less steel/ stain- less steel	PTFE o. PEEK/ stain- less steel	5%	10%	30%	50%	70%	90%	[m3/h]
10	3/8	3	0.12	16	-	-	IV	-	0.001	0.003	0.015	0.037	0.065	0.090	0.1
		4 ¹⁾	0.16	i i					0.00	0.02	0.10	0.19	0.27	033	0.35
		4	0.16						0.04	0.05	0.16	0.27	0.36	0.44	0.5
		6 ²⁾	0.24						0.05	0.12	0.48	0.76	0.98	1.13	1.2
		6 ³⁾	0.24		[bar] -				0.01	0.007	0.045	0.16	0.41	1.08	1.25
		8	0.31						0.06	0.07	0.12	0.26	0.61	1.50	2.0
		10	0.39						0.09	0.11	0.19	0.48	1.00	2.30	2.7
15	1/2	3	0.12	16	-	-	IV	-	0.001	0.003	0.015	0.037	0.065	0.090	0.1
		4 ¹⁾	0.16	1					0.005	0.015	0.100	0.190	0.265	0.325	0.35
		4	0.16	1					0.04	0.05	0.16	0.27	0.36	0.44	0.5
		6 ²⁾	0.24	ĺ					0.05	0.12	0.48	0.76	0.98	1.13	1.1
		6 ³⁾	0.24						0.005	0.007	0.045	0.160	0.410	1.080	1.25
		8	0.31	ĺ					0.07	0.08	0.13	0.27	0.63	1.60	2.1
		10	0.39						0.09	0.11	0.19	0.49	1.10	2.50	3.1
		15	0.59	ĺ					0.14	0.17	0.35	0.80	1.80	3.70	4.3
20	3/4	10	0.39	16	-	-	IV	-	0.11	0.12	0.20	0.52	1.20	2.60	3.2
		15	0.29						0.14	0.17	0.35	0.80	1.80	4.00	5.2
		20	0.79	16	16	10	IV	VI	0.20	0.25	0.45	1.10	2.40	5.20	7.1
25	1	15	0.29	16	-	-	IV	-	0.14	0.17	0.35	0.80	1.80	4.10	5.3
		20	0.79	16	16	10	IV	VI	0.2	0.25	0.47	1.10	2.50	5.40	7.2
		25	0.98						0.35	0.38	1.00	2.20	5.10	9.40	12.0
32	1 1/4	20	0.79	16	16	10	IV	VI	0.22	0.25	0.50	1.10	2.50	5.80	8.0
		25	0.98						0.40	0.47	1.10	2.50	5.40	10.3	13.0
		32	1.3						0.48	0.60	1.30	3.10	6.80	14.0	17.8
40	1 1/2	25	0.98	16	16	10	IV	VI	0.40	0.50	1.10	2.60	5.60	10.7	13.6
		32	1.3						0.48	0.60	1.30	3.20	6.90	15.0	20.2
		40	1.6	10	10	6	111	VI	0.60	0.70	1.70	4.00	9.20	18.2	23.8
50	2	32	1.3	16	16	10	IV	VI	0.48	0.60	1.30	3.20	6.90	16.0	21.0
		40	1.6	10	10	6	Ш	VI	0.60	0.70	1.70	4.00	9.20	18.9	24.6
		50	2.0	6	6	-	Ш	VI / -	0.90	1.10	2.90	6.80	15.5	29.3	37.0

low flow
 linear
 equal percentage

Electrical control

Electrical data	
Protection class	3 acc. to DIN EN 61140
Electrical connections	
Electrical connections	Cable gland, 2 x M20 or 2 circular plug-in connector M12, 5-pin and 8-pin
Operating voltage	$2 \text{ V DC} \pm 10 \text{ \% max}$. residual ripple 10 %
Operating current [A]*	max. 3 A including actuator at max. load and charging current of the optional SAFEPOS energy-pack (charging current approx. 1 A)
Lifelong energy storage SAFEPOS energy-pack	up to 10 years (depending on operating conditions)
Electronic without actuator [W]*	min. 2 W, max. 5 W
Control	
Input analogue:	galvanically isolated from the supply voltage and analog output 0/420 mA (input resistance 60 Ω) 05/10 V (input resistance 22 k Ω)
Output analogue:	Max. current 10 mA (for voltage output 05/10 V) Bürde (Last) 0560 Ω (for current output 0/420 mA)
Output digital:	current limit 100 mA
Input digital:	05 V = log "0", 1030 V = log "1" inverted input reversed accordingly
Communication interface:	Connection to PC via USB büS interface set
Communication Software:	Bürkert communicator

Electrical control and interface

The position of the actuator is regulated according to the set-point position value. The set-point position value is specified either by an external standard signal (analog) or via a field bus (digital).

Analogue Control

For analogue control 2 variants are available for the inputs and outputs and the connection interface

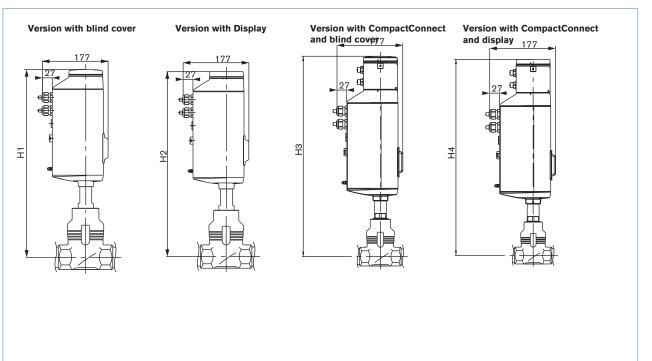
Input and output:

1 analogue input, 1 binary input
 1 analogue output, 2 binary output (option)

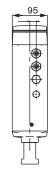
Interface:

* cable gland with connection terminal

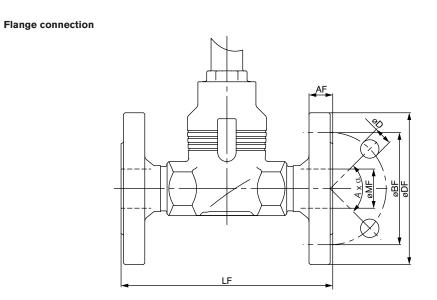
* M12 circular connectors M12 (option)


Fieldbus: EtherNet/IP, PROFINET, Modbus TCP (option)

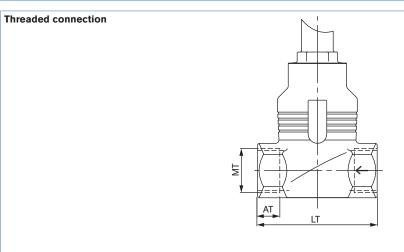
The Fieldbus Gateway for EtherNet / IP, PROFINET and Modbus TCP is integrated into a special module. It has 2 fieldbus connections with 4-pin M12 circular connectors. Under the gateway housing cover are the interfaces for the fieldbus connection and status LEDs. If there is a need to be include it in a network then the configuration of the Ethernet can be performed via the web server.


Dimensions [mm] - valve Type 3361 and valve system

3361



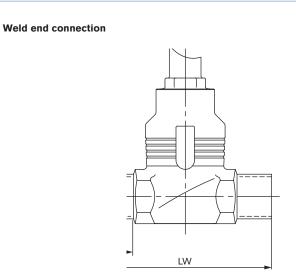
Port size	Height [mm]				
[mm]	H1	H2	H3	H4	
10	417	417	489	489	
15	417	417	489	489	
20	423	423	496	496	
25	446	446	518	518	
32	474	474	546	546	
40	479	479	551	551	
50	485	485	557	557	


DIN EN 1092, JIS 10K

Port size (tube)	DIN EN FTF se		acc. to	DIN EN	558-1		JIS 10 FTF se	K eries 10	acc. to	DIN E	N 558-2	2
[mm]	ø DF	LF	ø BF	AF	ø D	ø MF	ø DF	LF	ø BF	AF	ø D	ø MF
10	90	130	60	16	14	13.6	-	-	-	-	-	-
15	95	130	65	16	14	18.1	95	108	70	12	15	18.1
20	105	150	75	18	14	23.7	100	117	75	14	15	23.7
25	115	160	85	18	14	29.7	125	127	90	14	19	29.7
32	140	180	100	18	18	38.4	135	140	100	16	19	38.4
40	150	200	110	18	18	44.3	140	165	105	16	19	44.3
50	165	230	125	20	18	56.3	155	203	120	16	19	56.3

ANSI B 16.5

Port size (tube)	-	B 16.5 C eries 37			N 558-2	2
[inch]	ø DF	LF	ø BF	AF	ø D	ø MF
1/2	89	184	60.5	11.2	15.7	15.7
3/4	99	184	69.9	12.7	15.7	20.8
1	108	184	79.2	14.2	15.7	26.7
1 1/2	127	222	98.6	17.5	15.7	40.9
2	152	254	120.7	19.1	19.1	52.6



G, RC, NPT (EN ISO 228-1, ISO 7/1 /DIN EN 10226-2, ASME B 1.20.1)

Port size (tube)	MT G / NPT / RC	LT	AT		
[mm]	[inch]		G	NPT	Rc
10	3/8	65	12	10.3	10.1
15	1/2	65	14	13.7	13.2
20	3/4	75	16	14	14.5
25	1	90	18	16.8	16.8
32	1 1/4	110	20	17.3	19.1
40	1 1/2	120	22	17.3	19.1
50	2	150	24	17.6	23.4

EN ISO 1127 series 1/ISO 4200/DIN 11866 series B, DIN 11850 series 2/DIN 11866 series A/DIN EN 10357 series A

Port size (tube)	AW	LW	EN ISO 1127 se ISO 4200/DIN 1		DIN 11850 series 2 series A/DIN EN 10	
[mm]			ø MW	TW	ø MW	TW
10	20	90	17.2	1.6	13	1.5
15	20	90	21.3	1.6	19	1.5
20	20	100	26.9	1.6	23	1.5
25	26	130	33.7	2.0	29	1.5
32	26	140	42.4	2.0	35	1.5
40	26	150	48.3	2.0	41	1.5
50	26	175	60.3	2.0	53	1.5

BS4825 Part 1, ASME BPE/DIN 11866 series C

Port size (tube)	AW	LW	BS 482 Part 1	5	ASME BPE DIN 11866	-
[inch]			ø MW	тw	ø MW	тw
1/2	20	90	12.7	1.2	12.7	1.65
3/4	20	90	19.05	1.2	19.05	1.65
1	20	100	25.4	1.6	25.4	1.65
1 1/2	26	140	38.1	1.6	38.1	1.65
2	26	150	50.8	1.6	50.8	1.65

DIN 32676 s	on eries A.	ASME	BPE/D	Ļ	C series C odd						
Port size (tube)	AC	LC	Clamp tube: DIN 11): DIN 3 DIN 118 1866 se	2676 series A, 350 series 2/	Clamp DIN 32 tube: /	: ASME	ries C, BPE/	Clamp tube: I		-
				ø MD			ø MD		ø MC	ø MD	тс
[mm]			Ø MC						~	~	
	90	126			-		25.0	1.65	12.7	25.0	1.2
15	90	126 136	Ø MC 19 23	34.0	1.5 1.5	12.7	25.0 25.0	1.65 1.65	12.7 19.05	25.0 25.0	1.2 1.2
15 20	_	126 136 173	19	34.0 34.0	1.5	12.7 19.05	25.0	1.65	19.05	25.0	1.2
15 20 25	100	136	19 23	34.0	1.5 1.5	12.7		_		_	
[mm] 15 20 25 32 40	100 10	136 173	19 23 29	34.0 34.0 50.5	1.5 1.5 1.5	12.7 19.05	25.0	1.65	19.05	25.0	1.2
15 20 25 32	100 10 140	136 173 179	19 23 29 35	34.0 34.0 50.5 50.5	1.5 1.5 1.5 1.5	12.7 19.05 25.4 -	25.0 50.5 -	1.65 1.65 -	19.05 25.4 -	25.0 50.5 -	1.2 1.65 -
15 20 25 32 40	100 10 140 150 175	136 173 179 193	19 23 29 35 41	34.0 34.0 50.5 50.5 50.5	1.5 1.5 1.5 1.5 1.5 1.5	12.7 19.05 25.4 - 38.1	25.0 50.5 - 50.5	1.65 1.65 - 1.65	19.05 25.4 - 38.1	25.0 50.5 - 50.5	1.2 1.65 - 1.65
15 20 25 32 40 50 DIN 32676 s Port size (tube)	100 10 140 150 175	136 173 179 193 218	19 23 29 35 41 53 Clamp tube: ISO 42 ø MC	34.0 34.0 50.5 50.5 64.0 200/DIN Ø MD	1.5 1.5 1.5 1.5 1.5 1.5 1.5 2676 series B, 1127 series 1/4 11866 series TC	12.7 19.05 25.4 - 38.1 50.8	25.0 50.5 - 50.5	1.65 1.65 - 1.65	19.05 25.4 - 38.1	25.0 50.5 - 50.5	1.2 1.65 - 1.65
15 20 25 32 40 50 DIN 32676 s Port size (tube) [mm] 15	100 10 140 150 175	136 173 179 193 218	19 23 29 35 41 53 Clamp tube: ISO 42 ø MC 21.3	34.0 34.0 50.5 50.5 64.0 : DIN 3 EN ISO 200/DIN Ø MD 50.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	12.7 19.05 25.4 - 38.1 50.8	25.0 50.5 - 50.5	1.65 1.65 - 1.65	19.05 25.4 - 38.1	25.0 50.5 - 50.5	1.2 1.65 - 1.65
15 20 25 32 40 50 DIN 32676 s Port size (tube) [mm] 15 20	100 140 150 175 AC 90 100	136 173 179 193 218	19 23 29 35 41 53 Clamp tube: ISO 42 ø MC 21.3 26.9	34.0 34.0 50.5 50.5 64.0 2007/DIN 6 MD 50.5 50.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	12.7 19.05 25.4 - 38.1 50.8	25.0 50.5 - 50.5	1.65 1.65 - 1.65	19.05 25.4 - 38.1	25.0 50.5 - 50.5	1.2 1.65 - 1.65
15 20 25 32 40 50 DIN 32676 s Port size (tube) [mm] 15 20 25	100 140 150 175 AC 90 100 130	136 173 179 193 218 LC 136 136 146 136 164	19 23 29 35 41 53 Clamp tube: ISO 42 ø MC 21.3	34.0 34.0 50.5 50.5 64.0 : DIN 3 : DIN 5 : DIN 5 	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	12.7 19.05 25.4 - 38.1 50.8	25.0 50.5 - 50.5	1.65 1.65 - 1.65	19.05 25.4 - 38.1	25.0 50.5 - 50.5	1.2 1.65 - 1.65
15 20 25 32 40 50 DIN 32676 s Port size (tube) [mm] 15 20 25 32	100 10 140 150 175 B AC 90 100 130 140 140 140 150 175 80 90 130 140	136 173 179 193 218 KC 146 136 164 179	19 23 29 35 41 53 Clamp tube: ISO 42 ø MC 21.3 26.9 33.7 -	34.0 34.0 50.5 50.5 64.0 E DIN 3 E N ISO 200/DIN Ø MD 50.5 50.5 50.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 2676 series B, 1127 series 1// 11866 series TC 1.6 1.6 2.0 -	12.7 19.05 25.4 - 38.1 50.8	25.0 50.5 - 50.5	1.65 1.65 - 1.65	19.05 25.4 - 38.1	25.0 50.5 - 50.5	1.2 1.65 - 1.65
15 20 25 32 40 50 DIN 32676 s Port size (tube) [mm]	100 140 150 175 AC 90 100 130	136 173 179 193 218 LC 136 136 146 136 164	19 23 29 35 41 53 Clamp tube: ISO 42 ø MC 21.3 26.9 33.7	34.0 34.0 50.5 50.5 64.0 : DIN 3 : DIN 5 : DIN 5 	1.5 1.5 1.5 1.5 1.5 1.5 2676 series B, 1127 series 1. 11866 series TC 1.6 1.6 2.0	12.7 19.05 25.4 - 38.1 50.8	25.0 50.5 - 50.5	1.65 1.65 - 1.65	19.05 25.4 - 38.1	25.0 50.5 - 50.5	1.2 1.65 - 1.65

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астана +7 (7172) 69-68-15 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Владимир +7 (4922) 49-51-33 Волгоград +7 (8442) 45-94-42 Воронеж +7 (4732) 12-26-70 Екатеринбург +7 (343) 302-14-75 Иваново +7 (4932) 70-02-95 Ижевск +7 (3412) 20-90-75 Иркутск +7 (3952) 56-24-09 Йошкар-Ола +7 (8362) 38-66-61 Казань +7 (843) 207-19-05

Калининград +7 (4012) 72-21-36 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб.Челны +7 (8552) 91-01-32 Ниж.Новгород +7 (831) 200-34-65 Нижневартовск +7 (3466) 48-22-23 Нижнекамск +7 (8555) 24-47-85 Новороссийск +7 (8617) 30-82-64 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Первоуральск +7 (3439) 26-01-18 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саранск +7 (8342) 22-95-16 Саратов +7 (845) 239-86-35 Смоленск +7 (4812) 51-55-32

Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Сызрань +7 (8464) 33-50-64 Сыктывкар +7 (8212) 28-83-02 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Чебоксары +7 (8352) 28-50-89 Челябинск +7 (351) 277-89-65 Череповец +7 (8202) 49-07-18 Ярославль +7 (4852) 67-02-35